
Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

1

Real Time Graphics Programming

Sommario

RENDERING PIPELINE .. 6

IMAGE-ORIENTED .. 6
OBJECT-ORIENTED ... 6

REAL-TIME RENDERING PIPELINE .. 8

APPLICATION STAGE .. 9
GEOMETRY PROCESSING STAGE ... 9

1. Vertex Shading ... 10
2. Projection ... 10
3. Clipping .. 11
4. Screen Mapping ... 11

RASTERIZATION STAGE ... 11
FRAGMENT PROCESSING ... 12

Z-buffer algorithm .. 13

PIPELINE PERFORMANCE ...15

GPU PIPELINES ...17

VERTEX SHADER .. 18
TESSELLATION SHADER ... 18
GEOMETRY SHADER ... 19
FRAGMENT SHADER (OR PIXEL SHADER) .. 19
DEFERRED RENDERING ... 20

SHADER MODEL ...22

UNIFIED SHADER MODEL .. 22
UNIFIED ARCHITECTURE .. 22
GPGPU .. 22

POLYGON MESHES ...23

EULER’S POLYHEDRON FORMULA .. 24
MESH PRODUCTION TECHNIQUES ... 25

High poly vs Low poly ... 25
MAIN 3D FILE FORMATS ... 26
DATA STRUCTURE FOR POLYGON MESH ... 28

Indexed mesh ... 28
Half-edge .. 29

MESH ELABORATION .. 30
Tessellation .. 31
Consolidation ... 31
Simplification ... 32

TERRAIN RENDERING (VIEW-DEPENDANT) .. 35

TRANSFORMATIONS AND PROJECTIONS ...36

SCALE TRANSFORMATION ... 37
ROTATION TRANSFORMATION ... 37
TRANSLATION ... 38

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

2

HOMOGENEUS COORDINATES .. 39
INTERPRETATION OF TRANSFORMATIONS .. 43
AFFINE TRANSFORMATIONS IN THE 3D .. 43
EULER ANGLES .. 44
AXIS/ANGLE ROTATION .. 45
QUATERNIONS .. 45
PERSPECTIVE .. 47
CANONICAL CONFIGURATION FOR PARALLEL PROJECTION ... 49
CANONICAL CONFIGURATION FOR PERSPECTIVE PROJECTION .. 50
VIEW TRANSFORMATION .. 52
LOOKAT .. ERRORE. IL SEGNALIBRO NON È DEFINITO.
VIEW-FRUSTUM .. 54
THE CANONICAL VIEW VOLUME .. 55
WINDOW TO VIEWPORT TRANSFORMATION ... 57

SPATIAL DATA STRUCTURES ..60

BOUNDING VOLUME HIERARCHIES.. 60
UNIFORM GRID ... 63
OCTREES.. 64
BINARY SPACE PARTITIONING TREES ... 65
SCENE GRAPH ... 67

API FOR GRAPHICS PROGRAMMING ..70

DIRECT3D ... 71
OPENGL .. 71
DIRECT3D VS OPENGL ... 71
OPENGL EVOLUTION ... 71
VULKAN... 73
VULKAN VS OPENGL .. 74
METAL AND FRAGMENTATION ISSUE ... 74
LIMITATIONS OF USING APIS FOR GRAPHICS PROGRAMMING ... 74

CULLING AND CLIPPING ...76

BACKFACE CULLING ... 76
HIERARCHICAL VIEWFRUSTUM CULLING ... 77
PORTAL CULLING ... 78
OCCLUSION CULLING ... 79
CLIPPING ... 81

RASTERIZATION ...84

ANTIALIASING ... 87
FSAA ... 88
MSAA .. 88
MFAA ... 88
MLAA ... 89
SMAA .. 89
FXAA ... 89

INTERSECTION TESTS PICKING ..90

RAY ... 90
SPHERE .. 90

Implicit notation .. 90

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

3

Explicit notation.. 90
INTERSECTION TESTS, RULES OF THUMB ... 91
RAY/SPHERE INTERSECTION : MATHEMATICAL SOLUTION... 91
RAY/SPHERE INTERSECTION : GEOMETRICAL SOLUTION .. 92
RAY-BOX INTERSECTION (OBB AND AABB)... 93
RAY-POLYGON INTERSECTION... 94

Crossing test .. 94
PLANE-BOX INTERSECTION (OBB AND AABB) ... 95
PLANE-BOX INTERSECTION AABB ALTERNATIVE .. 95
PLANE-SPHERE INTERSECTION .. 95
SPHERE-SPHERE ITNERSECTION ... 96
AABB-AABB INTERSECTION ... 97
SPHERE-AABB INTERSECTION .. 97
SEPARATING AXIS THEOREM (SAT).. 97
TRIANGLE-TRIANGLE INTERSECTION ... 98
VIEW FRUSTUM INTERSECTION .. 98
VIEWFRUSTUM TESTING ... 99
DYNAMIC INTERSECTION TESTS ... 99

Dynamic intersection tests : Sphere-Plane ... 99
Dynamic intersection tests : Sphere-Sphere ... 100

PICKING .. 101
Other techniques 1 .. 102
Other techniques 2 .. 102
shader-based techniques ... 102

COLLISION DETECTION (COLLISION HANDLING) ... 103

COLLISION DETECTION .. 103
Simple cases ... 103

COLLISION DETECTION FOR COMPLEX SCENES .. 105
Broad phase ... 105
Mid-phase .. 107
Narrow-phase (optional) .. 108
Collision Response .. 110

PHYSICS SIMULATION .. 110

ACCURACY ... 111
FORCES IN PHYSIC SIMULATION .. 113

Gravity .. 113
Friction ... 113
Linear momentum .. 113
Impulse ... 113
Angular momentum ... 113
Torque .. 114

CONSTRAINTS ... 114
EXAMPLE-1 COLLISION OF 2 OBJECTS .. 115
EXAMPLE-2 RAGDOLL PHYSICS ... 116
HOW MUCH REALISM IS NEEDED? ... 117
EXAMPLE-3 SPRING-MASS-DAMPER SYSTEMS ... 117
EXAMPLE-4 VEHICLE .. 119

LIGHT SOURCES IN COMPUTER GRAPHICS ... 121

DIRECTIONAL .. 121

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

4

POINT LIGHT ... 121
SPOT LIGHT .. ERRORE. IL SEGNALIBRO NON È DEFINITO.
AREA LIGHT .. 122
INVERSE-SQUARE LAW .. 123
MATERIALS .. 123
BRDF, BTDF, BSDF ... 124
BSSRDF ... 125
PHYSICALLY BASED BRDF.. 125
BRDF ... 126
ANISOTROPIC BRDF .. 127
WHERE DO I FOUND THE BRDF FOR MATERIALS ? ... 127
RENDERING EQUATION ... 128
ILLUMINATION MODELS .. 129
BRDF SIMPLIFICATION ... 130
EMPIRICAL BRDF .. 130
SIMPLIFIED MODELS OF LIGHT REFLECTION .. 130

Diffusive ... 130
Specular .. 131
Glossy ... 131
Lambert’s cosine law .. 132
Phon reflection model 1975 ... 133
The whole phong model ... 135

BLINN-PHONG MODEL 1977 ... 136
PHYSICALLY BASED BRDF MODELS - GGX .. 137
MICROFACETS DISTRIBUTION (D) .. 140

Geometry attenuation (G) .. 141
EMPIRIC BRDF - WARD ANISOTROPIC MODEL... 142
OTHER MODELS .. 142

TEXTURE MAPPING & PROCEDURAL TEXTURES ... 143

Texturing approach ... 143
SIMPLIFIED TEXTURING PIPELINE ... 145

Projector function... 145
Projector function : mesh unwrap .. 145
Projector function : intermediate surface .. 146
Corresponder function ... 147
Texture values .. 148
Bump mapping ... 151
Normal mapping .. 153
Parallax mapping ... 154
Displacement mapping .. 155

PROCEDURAL TEXTURES .. 155
Issues of procedural texturing .. 157
Combination of functions ... 161
Antialiasing: analysis of fragment neighbourhood .. 162
Noise .. 163
Perline Noise .. 163
Turbolence... Errore. Il segnalibro non è definito.
GLSL and noise ... 169
Layered shader ... 170

GLOBAL ILLUMINATION TECHNIQUES .. 170

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

5

HEMISPHERE LIGHTING ... 170
AMBIENT OCCLUSION ... 172
SSAO (SCREEN SPACE AMBIENT OCCLUSION) .. 173
IMAGE-BASED TECHNIQUES ... 174

Environment mapping .. 174
SHADOW MAP .. 177
PERCENTAGE CLOSER FILTERING (PCF) .. 178
LIGHT MAPS ... 178
SHADOW (DEFINITION) ... 179
PROJECTION-BASED SHADOWS ... 180
SHADOW VOLUME ... 180
IMAGE BASED LIGHTING (IBL) .. 181
CURRENT STATE OF REAL-TIME GLOBAL ILLUMINATION ... 183
SSR, SCREEN BASED REFLECTIONS .. 183
STOCHASTIC SCREEN BASED REFLECTIONS .. 185
IRRADIANCE VOLUMES .. 185
VIRTUAL POINT LIGHTS (VPL) .. 186
NVIDIA VXGI (VOXEL GLOBAL ILLUMINATION) .. 186
REAL-TIME RAYTRACING ... 188

Shaders in DXR ... 189
FINAL CONSIDERATIONS .. 191

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

6

Rendering Pipeline
The main function of the pipeline is to generate, or render, a two-dimensional image, given a virtual

camera, three-dimensional objects, light sources, and more. The final result is a render (an image),

It’s like shooting a photo of a virtual world.

There are mainly two different approaches to the rendering pipeline

1. Image-oriented

2. Object-oriented approach

Image-oriented
We could also call it “offline rendering”, the image is generated calculating the color for each pixel,

this implies that the whole scene has to be loaded in memory. The process consists in send lot of

rays from the camera to the scene and then calculate the various intersections with objects.

This approach gave a photorealistic look, for this it is used in photorealistic rendering

technologies like ray tracing, photon mapping, surface scattering…

This approach is even used in Animation movies, each render of the movie could take hours for

being drawn, cause of the intensive computations involved.

This kind of approach is done primarily for this non interactive media, that can push the hardware a

lot since there isn’t expected a real-time feedback from the user.

The rendering pipeline :

- Preprocessing

o Loading of models

o Creation of scene graph

o Acceleration of data structures generation

- Rendering happens with raytracing technique.

- Post processing effects

o AA

o Gamma correction

o …

Object-oriented
In Real-Time graphics we don’t trace rays often like in the offline graphics paradigm, we use for

some particular features. In the Object-oriented approach, each object is rendered. We can’t

render like we did for the image-oriented approach, because we have a different goal, the goal is

the smoothness of interactivity between all this images. Rendering must be recalculated several

times per second, at least 30fps. This approach is used for interactive application (the state

changes).

The goal is everything must be smooth (RTGP), there is lot of tricks in this field to make the

application run fast, because it is a priority! This is done in recent games, that looks really good but

still using the interactive approach (no offline approach like Pixar movie).

Object Oriented Approach , Different phases:

- Preprocessing

o Model loading

o Scene graph creation

o Collision detection

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

7

o IO management

o …

o Culling

All the data collected in the preprocessing phase is submitted to the Graphics HW.

- Rendering

o For each vertex of each triangle

▪ Apply transformations (part of the T&L)

▪ Apply local illumination model (part of the T&L)

▪ Clipping

▪ Determine pixel composing the on-screen triangle

▪ Assign final color to each pixel (respecting the depth order)

Real Time Graphics is not only videogame, it is the most known media but anytime I have a

graphical application which is interactive (Unity, Editor, Maya, Blender, scientific visualization …)

so where the graphical result changes interactively in real time when I press a button, that one is

based on Real-Time Graphics.

Differences between the two rendering approaches

The image-oriented is much more expansive in terms of resources, this brings better results for

photorealistic rendering and animation movies. This happens to the fact that the whole scene must

be loaded in memory, and then use the ray tracing rendering technique for calculate the color of

each pixels.

- Direct and indirect light

- Intersections

- Real physics equations

- …

The Object-oriented approach instead, discards all the geometry not involved in the generation of

the single frame, because we have a different goal, the smoothness of the result since we are

talking about an interactive application.

- Each triangle is elaborated independently.

- Local illumination.

- Essential’s triangles are sent to GPU.

- Discard elements not used in the rendering stage (culling).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

8

Real-time Rendering Pipeline
In the Real-time Rendering Pipeline, we manage and elaborate each object separately, every 3D

model in the scene is composed by triangles, every object has got elaborated independently. We

got a large preprocessing phase, but also we do lot of other operations which are related to the

interactivity of the application (input events), it is something that must be detect during the

rendering.

The pipeline stages execute in parallel, but they are stalled until the slowest stage has finished its

task. A coarse division of the real-time rendering pipeline into four main stages—application,

geometry processing, rasterization, and pixel processing. Each of these stages is usually a pipeline

in itself, which means that it consists of several substages.

We differentiate between the functional stages shown here and the structure of their

implementation.

• A functional stage has a certain task to perform but does not specify the way that task is

executed in the pipeline.

• A given implementation may combine two functional stages into one unit or execute

using programmable cores, while it divides another, more time-consuming, functional stage

into several hardware units

The rendering speed may be expressed in frames per second (FPS), that is, the number of

images rendered per second. It can also be represented using Hertz (Hz), which is simply the

notation for 1/seconds.

Overview of the pipeline stages :

• Application stage, the application stage is driven by the application and is therefore

typically implemented in software running on general-purpose CPUs. These CPUs

commonly include multiple cores that are capable of processing multiple threads of

execution in parallel.

o Some tasks performed on the CPU : collision detection, global acceleration,

animation, physics simulation.

• Geometry Processing stage, which deals with transforms, projections, and all other types

of geometry handling. This stage computes what is to be drawn, how it should be drawn,

and where it should be drawn. The geometry stage is typically performed on a graphics

processing unit (GPU) that contains many programmable cores as well as fixed-operation

hardware.

• The Rasterization stage, typically takes as input three vertices, forming a triangle, and

finds all pixels that are considered inside that triangle, then forwards these to the next

stage.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

9

• The Pixel processing stage, it may also perform per-pixel operations such as blending the

newly computed color with a previous color.

The images are stored inside the “Frame Buffer”, it’s a portion of memory on the GPU where I

save the final pixels of my render before showing them to screen (32-bit image). Inside this

memory is contained the information about the color of every pixel, in nowadays usually are used

32 bits per pixel (24-bit true color pixel + the alpha channel).

To avoid a partial update of the frame content, the flickering effect, it’s used the double buffering

(with Vulkan recently we moved to the triple buffering) technique that involves two buffers called

back-buffer (which contains the new image) and front-buffer (which contains the current image, the

thing you are seeing on the screen).

- Rendering in back buffer the image

- Swap back buffer and front-buffer

- Show the new frame

Back in the past the frame buffer was placed in the main RAM, now it is on the GPU.

Application Stage
The developer has full control over what happens in the application stage, since it usually

executes on the CPU. Therefore, the developer can entirely determine the implementation and can

later modify it in order to improve performance.

At the end of the Application Stage, the geometry to be rendered is fed to the Geometry

Processing Stage. These are the rendering primitives, i.e., points, lines, and triangles, that might

eventually end up on the screen (or whatever output device is being used). This is the most

important task of the application stage.

All this said, some application work can be performed by the GPU, using a separate mode called a

compute shader. This mode treats the GPU as a highly parallel general processor, ignoring its

special functionality meant specifically for rendering graphics.

A consequence of the software-based implementation of this stage is that it is not divided into

substages, However, to increase performance, this stage is often executed in parallel on several

processor cores.

One process commonly implemented in this stage is collision detection. The application stage is

also the place to take care of input from other sources, such as the keyboard, the mouse, or a

head-mounted display. Depending on this input, several different kinds of actions may be taken.

Geometry Processing Stage
The geometry processing stage on the GPU is responsible for most of the per-triangle and per-

vertex operations.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

10

1. Vertex Shading
There are two main tasks of vertex shading, namely:

1. Compute the position for a vertex.

2. Evaluate whatever the programmer may like to have as vertex output data, such as a

normal and texture coordinates.

In the past much of the shade of an object was computed by applying lights to each vertex’s

location and normal and storing only the resulting color at the vertex. These colors were then

interpolated across the triangle. For this reason, this programmable vertex processing unit was

named the “vertex shader”.

The vertex shader is now a more general unit dedicated to setting up the data associated with

each vertex.

The vertex position is computed starting from a set of coordinates where the model resides in its

own model space, which simply means that it has not been transformed at all. Each model can be

associated with a model transform so that it can be positioned and oriented. It is possible to have

several model transforms (matrix operations) associated with a single model. It is the vertices and

the normals of the model that are transformed by the model transform. The coordinates of an

object are called model coordinates, and after the model transform has been applied to these

coordinates, the model is said to be located in world coordinates or in world space.

As mentioned previously, only the models that the camera (or observer) sees are rendered. The

camera has a location in world space and a direction, which are used to place and aim the camera.

To facilitate projection and clipping, the camera and all the models are transformed with the view

transform.

The purpose of the view transform is to place the camera at the origin and aim it, to make it look

in the direction of the negative z-axis, with the y-axis pointing upward and the x-axis pointing to the

right.

(The actual position and direction after the view transform has been applied are dependent on the

underlying application programming interface (API).) The space thus delineated is called camera

space, or more commonly, view space or eye space.

Next, we describe the second type of output from vertex shading. This operation of determining the

effect of a light on a material is known as shading. It involves computing a shading equation at

various points on the object. Typically, some of these computations are performed during geometry

processing on a model’s vertices, and others may be performed during per-pixel processing.

Vertex shading results (which can be colors, vectors, texture coordinates, along with any other

kind of shading data) are then sent to the rasterization and pixel processing stages to be

interpolated and used to compute the shading of the surface.

2. Projection
The aim of this stage is to convert 3D coordinates to 2D coordinates.

As part of vertex shading, rendering systems perform projection and then clipping, which

transforms the view volume into a unit cube with its extreme points at (−1, −1, −1) and (1, 1, 1).

The unit cube is called the canonical view volume. Projection is done first, and on the GPU it is

done by the vertex shader.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

11

There are two commonly used projection methods, namely orthographic and perspective

projection. Note that projection is expressed as a matrix and so it may sometimes be

concatenated with the rest of the geometry transform.

• The main characteristic of orthographic projection is that parallel lines remain parallel

after the transform. This transformation is a combination of a translation and a scaling

• The perspective projection is a bit more complex. In this type of projection, the farther

away an object lies from the camera, the smaller it appears after projection. In addition,

parallel lines may converge at the horizon. The perspective transform thus mimics the way

we perceive objects’ size. Geometrically, the view volume, called a frustum, is a truncated

pyramid with rectangular base. The frustum is transformed 18 2. The Graphics Rendering

Pipeline into the unit cube as well.

Both orthographic and perspective transforms can be constructed with 4 × 4 matrices and after

either transform, the models are said to be in clip coordinates (this occurs before division by w).

During this phase the z-coordinates of the objects is stored inside the Z-buffer.

3. Clipping
Only the primitives wholly or partially inside the view volume need to be passed on to the

rasterization stage which then draws them on the screen. Primitives entirely outside the view

volume are not passed on further, since they are not rendered. The use of a projection matrix

means that the transformed primitives are clipped against the unit cube. Only the primitives that

are partially inside the view volume that require clipping.

4. Screen Mapping
Only the primitives inside the view volume are passed on to the screen mapping stage, and the

coordinates are still three-dimensional when entering this stage. The 𝑥 and 𝑦 coordinates of each

primitive are transformed to form screen coordinates by adapting the primitives coordinates to the

screen aspect ratio (this is called view-port transform).

Rasterization Stage
Given the transformed and projected vertices with their associated shading data, the goal of the

next stage is to find all pixels that are inside the primitive, and then the rasterization colors all these

pixels. This is the big difference in respect of image-oriented approach, where the pixel color is

chosen since the beginning and not at the end of a pipeline (we didn’t talk about pixels since now).

Rasterization, also called scan conversion, is thus the conversion from two-dimensional vertices in

screen space(each with a z-value (depth value) and various shading information associated with

each vertex, this is the triangle traversal) into pixels on the screen.

So, we have these vertices in continuous domain, and we have to represent it on a discrete

domain (the pixels). This is the rasterization, there is different techniques that differ in base how

the GPU’s pipeline was settled up.

Attention, the rasterization produces fragments, this because the rasterization doesn’t create the

final pixels. The rasterization takes the primitive vertices from something that could maybe be

visible (still not culled or clipped, remember the vertex processes doesn’t care about how the

object is placed, they just calculate the vertices for that), and calculated the potential pixels, and

the scan conversion is applied to every triangle of every object.

Rasterization can also be thought of as a synchronization point between geometry processing and

pixel processing, since it is here that triangles are formed from three vertices and eventually sent

down to pixel processing.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

12

It is split up into two functional substages: triangle setup (also called primitive assembly) and

triangle traversal.

1. Triangle Setup

In this stage the differentials, edge equations, and other data for the triangle are computed,

some of this data will be used in the next step the Triangle traversal.

2. Triangle Traversal

In this stage of the rasterization is where each pixel that has its center covered by the triangle

is checked and a fragment is generated for the part of the pixel that overlaps the triangle.

Finding which samples or pixels are inside a triangle is often called triangle traversal. Each

triangle fragment’s properties are generated using data interpolated among the three triangle

vertices, these properties include the fragment’s depth, as well as any shading data from the

geometry stage.

• Bresnam’s algorithm : considering the distance between two points P and Q, I then

consider the distance between the point of the line and the center of the pixels, then I

search for the closest pixel to the “line” and I assigned that pixel to the line. In some cases,

I can color two pixels (2-pixel centers are perfectly distant from the line). This technique is

applied to all edges to determine a primitive like a triangle , and then the intern of the

primitive will be filled.

Fragment Processing
At this point, all the fragments are considered, the Pixel Processing (or we should call it fragment

processing) is divided into pixel shading and merging. Pixel processing is the stage where per-pixel

or per-sample computations and operations are performed on pixels or samples that are inside a

primitive.

1. Fragment Shading (or pixel shading)

Any per-pixel shading computations are performed here, using the interpolated shading data as

input. the pixel shading stage is executed by programmable GPU cores. To that end, the

programmer supplies a program for the pixel shader which can contain any desired

computations. A large variety of techniques can be employed here, like texturing, color

interpolation, per-fragment illumination, …

2. Merging

Final operations to determine the final color of pixel, the information for each pixel is stored in

the color buffer. It is the responsibility of the merging stage to combine the fragment color

produced by the pixel shading stage with the color currently stored in the buffer. This stage is

also called ROP “raster operations (pipeline)” or “render output unit”.

Unlike the shading stage, the GPU subunit that performs this stage is typically not fully

programmable. However, it is highly configurable, enabling various effects. This stage is

also responsible for resolving visibility. This means that when the whole scene has been

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

13

rendered, the color buffer should contain the colors of the primitives in the scene that are

visible from the point of view of the camera.

For most or even all graphics hardware, this is done with the Z-buffer (also called depth buffer)

algorithm. A Z-buffer is the same size and shape as the color buffer, and for each pixel it stores

the z-value to the currently closest primitive, this is done in the projection stage.

This means that when a primitive is being rendered to a certain pixel, the z-value on that

primitive at that pixel is being computed and compared to the contents of the Z-buffer at the

same pixel. If the new z-value is smaller than the z-value in the Z-buffer, then the primitive that

is being rendered is closer to the camera than the primitive that was previously closest to the

camera at that pixel.

Therefore, the z-value and the color of that pixel are updated with the z-value and color from

the primitive that is being drawn. If the computed z-value is greater than the z-value in the Z-

buffer, then the color buffer and the Z-buffer are left untouched.

Z-buffer algorithm
There is an auxiliary buffer initially set at 0, for all the fragments we independently do the

following operations (processing order of the fragments is irrelevant) :

o Check the depth value in the Z-buffer

o If the fragment depth > depth inside the Z-buffer (> o < depends on pipeline

implementation), this means that the current fragment is closer than previous

fragments. Then we update the Z-buffer and assigning fragment color to final pixel.

• The Z-buffer Issues with transparency

The Z-buffer stores only a single depth at each point on the screen, so it cannot be used for

partially transparent primitives. These must be rendered after all opaque primitives, and in

back-to-front order, or using a separate order-independent algorithm. Transparency is one

of the major weaknesses of the basic Z-buffer (one of the solutions is to do a rough

approximation (there is a chapter in the book)).

Other Buffers :

• Alpha channel

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

14

• Stencil buffer is an offscreen buffer used to record the locations of the rendered primitive.

The stencil buffer can be a powerful tool for generating some special effects. All these

functions at the end of the pipeline are called raster operations (ROP) or blend operations.

• Accumulation buffer, used for effects like motion blur, soft shadows, etc.

• The framebuffer generally consists of all the buffers on a system.

• To avoid allowing the human viewer to see the primitives as they are being rasterized and

sent to the screen, double buffering is used. This means that the rendering of a scene

takes place off screen, in a back buffer. Once the scene has been rendered in the back

buffer, the contents of the back buffer are swapped with the contents of the front buffer that

was previously displayed on the screen. The swapping often occurs during vertical retrace,

a time when it is safe to do so.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

15

Pipeline performance
As we know we have a sequence of operations, some of them are on the CPU (for the application

stage) and others are on the GPU. We may need to establish some measures of performance of

the pipeline.

• The speed of the rendering pipeline is called “rendering speed” or “throughput” , this is

given by the slowest pipeline stage, in other situations this stage is called “bottleneck”.

• FPS means frame per second, it represents the number of images you can render in one

second (can change, isn’t a fix value).

• Hertz is a measure for frequency, and it is expressed as 1/seconds, this is more linked to

displays for the output devices since it is an update frequency (and it is a fixed value).

• Fill rate, is the number of pixels that a GPU can write to memory in 1 second, the unite

measure is Gigapixel/s (at the moment @2021)

Fill rate = (byte per pixel) x (dim framebuffer) x (update frequency)

Anyway, there is not a univocal method to determine the fill rate, it is used by card manufacturer to

test the GPU conditions, extremely high fill rate is required for real-time graphics, many of those

high results are measured in laboratory conditions.

The role of fill rate was more important back in the past, because it was used as ”marketing

indicator” of performance by video card manufacturers, currently its role is less considered (to

measure the performance of the GPU but isn’t the only one to look at).

GPU, Graphics Processing Unit is a hardware specifically designed to accelerate graphics

rendering, the first commercial GPU was distributed in the 90’ from Silicon Graphics was leader

in professional fields, mainly used by playing industries, military industries, CAD,… for doing

graphics operations.

Then since 96’ we had the first version of GPU commercially available for PC, the 3Dfx Voodoo 1.

Today exist two kinds of GPU for PC, one with a dedicated hardware and dedicated cards, the

other is integrated in the motherboards.

Videogames are the most computational expensive application that we can have, they still push

the HW to the limit because we want to use better algorithms for better rendering.

The GPU has its own processor and memory, it is connected to the PC through the bus.

Different types of bottlenecks

• If it is during the geometric stage Transform-limited application

• If it is during the rasterization stage Fill-limited application

• If it is due to the CPU CPU-limited application

• If it is due to the BUS (bandwidth of the BUS) Bandwidth-limited application

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

16

There are different kind of measures of the GPU’s, picking the case for GeForce Titan RTX

• Computational Operations :11.34 TFLOPS

• Bandwidth : 672 GB/s

• 180+mln of cards

• The diffusion of the GPU doubled each 6 months, Moore’s law cubed

There are also different words respect to the design, people think that a GPU is like a computer

inside a computer, but a GPU is designed mainly to do Graphics Rendering, so the internal

structure of this computational machine is different than the design of a PC, it is made to treat

Linear Algebra and Matrix Operations.

• CPU

o Limited amount of cache

o Control Unit

o Limited amount of ALU, only 7% of the CPU is dedicated to the ALU.

o DRAM

• GPU

o Insane amount of ALU’s, more than 50% of the GPU is dedicated to the ALU.

o DRAM

They are really different !

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

17

GPU Pipelines
In the 96’ the GPU was more like a black box, you couldn’t develop shader or edit parameters,

even the geometry processing was mainly on the CPU, this is why at that time we rely in back-to-

front ordering.

With the going on of researches we arrive to the situation where the geometry processing moved

to the GPU, and CPU got totally divided from the GPU stages.

These stages weren’t programmable it was called fixed-function pipeline, the only possibility was

to enable or disable the Z-buffer test, for the rest were no control over the stages.

In the last 15 years we developed the programmable pipeline (still same distribution of stages

between CPU and GPU).

• The crucial stages are programmable by shaders, where we can tell the GPU how we want

to treat the vertices by code.

• There is still part of the GPU where they aren’t programmable, there are still fixed

operations.

The trend Is slow, but the direction is to be going in direction to a completely programmable

pipeline.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

18

Given a reorganization of the stages we have seen before, we could update the scheme like this

The green squares are the programmable stages by shaders (the dotted are the optional shaders),

the blue squares (Clipping and Triangle Setup + Triangle Traversal) are the fixed stages, the

yellow squares (Screen Mapping and Merger) are fixed but it’s possible to set some parameters.

Vertex Shader
This is the first part of the pipeline where I can develop code. A VS can modifies create ignores

values associate to the vertices :

o Color

o Normal

o Texture coordinates

o Position

It can’t destroy vertices (it is possible with tessellation shader).

Each vertex is elaborated independently , they are elaborated in parallel by the GPU.

Tessellation Shader
It is an optional stage and is mainly used to render curved surfaces :

• Beziers surfaces

• NURBS

Before tessellation the curved surfaces were obtained only with offline rendering. This tessellation

shader can change dynamically the number of meshes involved in the figure giving a much higher

level of detail. It is a computationally expensive shader (less then geometry shader). It reduces the

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

19

memory involved because the surfaces are computed dynamically, no bottleneck between the

CPU and GPU.

Geometry Shader
Its an optional stage, it is used to elaborate a subset of vertices together, for example :

• Creation of a limited number of copies

• Edges selection for shadow generation techniques

• Extraction of parameters linked to vertices

For example, extract some parameters from the primitives elaborated and …

It is a computationally expensive shader.

Fragment Shader (or Pixel Shader)
It is a fully programmable stage over the fragment operations, it gives the color to assign to that

fragment. But is also used for :

• Image Processing Techniques

• Gradient computations

• Advance texture techniques

Each fragment is elaborated independently, the standard output of the fragment shader (or pixel

shader) is the fragment color. After the fragment shader the Z-buffer test will occur (using the Z-

buffer algorithm).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

20

Deferred Rendering
It is possible to use the Fragment/Pixel Shader for MRT, Multiple Render Targets, it means that

the pixel shader results are saved in auxiliary buffers. Usually, the result is saved on the frame

buffer (after the Z-buffer) but is also possible to save the results of the computation not directly on

the frame buffer but on auxiliary buffers.

It’s like we have an area of temporary memory like the frame buffer, and we assign for a certain

time the results in this buffer instead of the classic frame buffer.

This is at the basis of a technique called deferred rendering, so for do that we need more than

one buffer and after we do the elaboration of Vertex Processor and Rasterizer, then the Fragment

Processor doesn’t save the final color of the Pixel, but it computes different components of the

color (which usually are combined together for obtain the final color) it saves these components as

images inside this buffers.

This process requires two rendering steps :

1. The first pass is called geometry pass, we render the scene and retrieve all kinds of

geometrical information (vectors, normal, position) from the objects that we store in a

collection of textures called the G-buffer.

2. The second pass is called lighting pass, we use the textures saved in auxiliary buffers (the

G-buffer or MRT), then we iterate pixel by pixel over them applying the lighting (Fragment

Shader). Instead of calculating each object from Vertex Shader to Fragment shader,

essentially we calculate the Fragment Shader of all the G-buffer objects in the second pass.

The major advantage is that everything inside the MRT (or G-buffer) will be combined in fragment

information that will go on screen, this is great because assure us that for each pixel the lighting

will be calculated once (depth information stored as texture), this allows us the intensive use of

lighting.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

21

.

This works well because the standard pipeline does depth calculation after the Fragment Shader,

so after the lighting calculation, this means that in the standard way the lights are calculated for

every object in the scene even if the object is behind another.

Forward Rendering vs Deferred Rendering

Forward Rendering is the classical pipeline VS-GS-FS and save the resulting image directly in

the frame buffer. This is the standard mode where the illumination is calculated per-vertex, per-

fragment for each light and this involves lot of computation. Much of the calculations used per-

fragment will be discarded during the depth testing.

This is sadly the truth the standard depth testing is applied after the fragment shader, only in the

most recent architectures there is a specialized hardware to perform an optional early depth

testing.

Deferred Rendering in this kind of pipeline VS – FS the geometry is processed without the lighting

computation there are several render targets to being saved (colors, depth and normal). saves on

MRT (Multiple render targets, different buffers)

The lighting will be calculated at the end in the Fragment Shader only the actually visible

fragments. There will be more than one execution of the pipeline one for MRT, this means that

everything has to be optimized (I’m using the GPU for just one frame).

Complexity Forward Rendering : O(num_fragments * num_lights)

Complexity Deferred Rendering : O(screen_resolution* num_lights)

Deferred Rendering issues

• It is needed recent hardware with MRT.

• An adequate bandwidth

• Issues with transparency and multiple materials

• No anti-aliasing

After the fragment shader there is the depth test.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

22

Shader Model
Different graphics board of different generations may have some specific techniques or features,

so to help subdivide these families they have introduced the term “Shader Model”.

The number of Shader Model is linked to the version of the Graphics API, higher the number of the

Shader Model newer will be the GPU, the Shader Model is a number that is used to classify the

characteristics of the video card.

Unified Shader Model
The Unified Shader Model or Shader Model 4.0 is a Shader Model that use a common

instruction set for handling all the three typology of shaders (vertex, geometry and pixel). It’s an

evolving technology and we are moving to this. It was introduced by DirectX 10

It offers many advantages :

• Simpler shader coding, since the ISA is reduced.

• More flexible use of the hardware, any shader unit can be used no difference in base of the

type.

In this model, we have a common architecture (unified architecture), in the normal architecture we

have transistors for Vertex, Pixel and Geometry shaders, different parts of the GPU are used for

the different shaders. This also means that the shader programming languages (like GLSL, HLSL,

…) have instructions or features that are usable only in a specific shader. The aim of the Shader

Model 4.0 is to use a common architecture with common operations for all the shaders.

Unified Architecture
It’s the architecture used for supporting the Shader Model 4.0, the aim of this architecture is to

have a unified design where all the computational units can execute all the types of shaders.

• This means having a much more flexible architecture, where all the shaders are treated as

threads.

• At the moment the Unified Shader Model is more advanced than the Unified Shader

Architecture.

The idea of unified architecture is to have no more distinctions between processors, so that I can

dynamically change their distributions of the processors as needed, resulting in a less sequential

approach where all the computational units are the same and in the same place and then

distributed in base of the processors needs.

GPGPU
In the last years they exploited the capabilities for the GPU, and they found out that this boards are

capable of a very fast parallel computation at very low cost in respect of cluster of machines.

For do that there is high level API like OpenCL and CUDA, for allowing the programmers using the

computational pipeline of the machine for GPGPU. They don’t use the graphic pipeline, they are

more a higher level of the rendering API, under the hood the computation is then performed on the

graphics hardware. Usually, they use the fragment processor the main idea is to use the

approach SIMD. They load the data on a matrix and use the fragment processor to elaborate this

matrix of data.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

23

Polygon Meshes
A primitive in computer graphics is a basic element, such lines, points or polygons, which can be

combined to create a more complex graphical image.

A polygon mesh is a lattice that defines an object in the space, this object is composed by

vertices, edges and faces. The faces could miss, these depends by the natures of the objects

(wireframe).

Usually, they have some attributes with the vertices :

• Color

• Normals

• Texture coordinates

Usually, they are stored in the disk, and they are sent together with the vertices, in other cases no

and they are computed at the moment in the application stage.

An important concept is the connectivity among the primitives, which is the topology of the

mesh (which is a graph). It is really important because our mesh is made by these vertices and the

connection between vertices.

We can see the topologies from both sizes:

• Creation process, we need to have a good topology this allow the model to be changed

processed and modified easily, and it is easy to setup animation.

• Developer process, I need a good and efficient data structure to select the topology.

For the creation process a good approach is the “edge loops” or “face loops”, which Is a chain of

connected edges (loops) following some important lines depicting the nature of the model. For

some area of this objects the loops are used for depicting in a better way the details, for others

area the vertices are distributed in a more uniform way.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

24

They are usually two options for representing faces of a mesh, 3 or 4 vertices, no more then that

because is computationally inefficient.

Triangles :

• Very good quality

• They are surely coplanar.

• Easy intersection test

• Very easy to computer the normal

• They are more difficult to create complex meshes.

Quads :

• They aren’t surely coplanar.

• They are easter to create correct topology.

In the end a quad is made by two triangles, and it will be converted to these triangles (by the

modeler or by the API, like during the tessellation stages) so in the end you have triangles (this is

what the GPU will use).

Euler’s polyhedron formula
Put in relation number of vertices and faces.

V = Vertices

E = Edges

F = Faces

g = surface genus

𝑉 − 𝐸 + 𝐹 = 2 − 2𝑔

If the surface has no holes (𝑔 = 0), it is called “closed”, and F are triangles which means that is

made by three edges (multiply by 3) and each of these edges is shared by two faces (divide by 2),

we get :

𝑉 −
3

2
𝐹 + 𝐹 = 𝑉 −

1

2
𝐹 = 2

The most important attribute of the mesh is the normal, which is a versor perpendicular to the

surface.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

25

Mesh production techniques
• Box modeling is a technique in 3D modeling where a primitive shape (such as a box,

cylinder, sphere, etc.) is used to make the basic shape of the final model.

• Digital sculpting, which is heavily used for movies, is the use of software that offers tools to

push, pull, smooth, grab, pinch or otherwise manipulate a digital object as if it were made of a

real-life substance such as clay.

• Procedural modeling

o Height map, this by using a noise calculated on an image (DEM .- digital elevation

)or procedurally

• Using parametric surfaces, we use the tessellation shader performing the evaluation.

o Bezier

o NURBS

• 3D Scanning, not used actively where we acquire the points corresponding to the real

object and then we have to heavily elaborate these vertices. After that we do triangulation

in order to create the final mesh.

High poly vs Low poly
This is one of the main differences in graphics between online and offline rendering. In the offline

rendering i want the very final level of detail to be perfectly detailed, so I don’t care about the

number of polygons, where in the online rendering I care of the graphics but mainly about the

performance of this graphics in my game.

Same model but different topology.

In case of low poly, we compromise the mesh complexity for achieve higher performance, this

processing It’s involved on games with more cartoonish effect and fantasy.

There is a little trick, where it is possible to use a low-poly mesh with a detailed texture for achieve

a good-looking effect.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

26

Main 3D file formats
There is not a standard, but anyway there is a trend to use something more uniform among the

different possible application :

• OBJ format made by Wavefront (now fused with alias, they made Maya), it is a text-based

format .. It is a really notorious format. Used for describing :

o Geometry

o It is possible to use an external file .mtl to describe materials. Inside the .obj file

there will be a reference to the .mtl

It is a simple file to parse in a program to retrieve the data about the object. The bottom part of the

list contains how the faces are composed of the object 1/1/1 means the first vertex + first uv

coordinate + first normal vector.

OBJ is really diffused and still a lot used and well supported, the problem of .obj is given by the

fact that it is good only for static meshes (this is the major limitation).

• FBX is another quite diffuse format, initially created for motion capture data (used in movie

for moving virtual character) it is currently owned by Autodesk and isn’t open as format.

There is an SDK in C++ and Python for support the format in engines for other software. It

is more capable of OBJ because he can store animation and world scenes (not only single

model like with .obj). A loader for an .fbx file is more complex than one for .obj.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

27

FBX file structure

• In the last years there is another format called COLLADA (Collaborative Design Activity)

(.dae, Digital Asset Exchange) proposed by Khronos Group. The aim of this format is to

store everything possible (geometry, shader, physical simulation, …) inside a single file

based on XML, this for give higher flexibility. The main issue with COLLADA is the

compatibility between importers and exporters.

• glTF, since COLLADA didn’t get famous as expected the Khronos Group proposed another

format for efficient transmission and loading of 3D Scenes, also called the “JPEG of 3D”.

This format works even for distributed graphics application like mobile games, multiplayer

games, … there is a need of transferring models and assets among servers and clients in

the most efficient and fast way. webGL born for minimize the assets of these models. They

intended this format as more usable as possible, it supports different kind animations,

support Physically Based Materials (PBR) and the approach was a bit more efficient

respect of COLLADA, because there is lot of tools for managing the input/output of the

data.

Structure of the file :

o JSON containing the description of the hierarchy of the file

o .bin binary external file containing all the actual information

o .png/.jpg for texture

Having this component separated means that json can points to different files allocated in

different servers. So, you can receive the .gltf and inside you will find the reference to the

remaining files on other servers (lot of flexibility).The main idea of .glTF is to be the final

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

28

format used by tools of creation and engines or even other frameworks that need to work

with the final model.

COLLADA has the role of exchange of assets, so keeping all the information to use in

another production software, while glTF has really the one to use in the final part of the

process (inside an API).

Data Structure for Polygon Mesh
We need two data structure for the Polygon Mesh:

1. For the mesh elaboration in the Application Stage.

2. Another data structure for the GPU per-vertex elaboration inside the Geometry Stage.

Indexed mesh
In some way similar how the .obj format file are expressed.

We have a list of vertices and a list of faces, where the index of the list of vertices are used to

describe the faces of the mesh.

There is an option to this, where instead of a list of vertices you use and edge list (it is a bit more

redundant).

This data structure is easy, but they aren’t efficient for elaboration, because if you need to process

one face or one edge you have to parse all the arrays. So usually, you need something more

complex but more performant the half-edge or the winged edge (very similar, we are not going to

see it).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

29

Half-edge
You have a model, and you have edges and faces;

you take one edge and you considered it not just as a

single edge, but you consider it has made by two

vectors pointing from and to the vertices in between.

So, in the data structure you maintain the information

about :

• The vertex at the end of the half-edge.

• The next half-edge.

• The internal face of the half-edge.

• The two half-edges pointing in the opposite

direction.

Why you do this ? In this situation if you have to elaborate one single primitive of the mesh, I can in

a linear time assess to all the neighborhood of the mesh.

e.g., if I have the half-edge and I can cycle in all the edges of the face, I can do it iteratively

accessing the pointers of next edges.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

30

This is a really effective data structure for elaboration, I use something like the half-edge in the

Application Stage, but actually the GPU wants the Indexed Mesh data structure for do his own

computation.

So usually what you do is :

1. Load a half-edge.

2. Do stuff on the mesh.

3. Convert the half-edge in Indexed Mesh.

4. Copy the information on the GPU.

Why we need to have a copy of the indexed mesh in the memory and then on the GPU?

The first version of OpenGL we didn’t have the transfer of vertices data on the VRAM it was

transferred directly by the central memory, it was called immediate mode. It was really slow, in

particular for the bus transfer (was the most common bottleneck in the pipeline).

After OpenGL 3.0 they created the Vertex Buffer Object is an area in the VRAM which stored the

buffer of vertices expressed in Indexed Mesh approach, ofc is faster since the data copied is

maintained in the memory and will be read directly from the GPU. This kind of architecture has

some weakness :

1. You keep a copy of the data between the Application Stage and Geometry Stage. But

actually, for static meshes there is a caching mechanism for not transferring again for each

frame.

Mesh Elaboration
One of the things that happens on the mesh on Application Stage are some kinds of preliminary

elaboration in order to get ready for the GPU processing.

There are three possible set of operations :

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

31

1. Tessellation

2. Consolidation

3. Simplification

If needed, they are applied only once, after loading stage (performed by the auxiliary lib like GLM,

or by specific classes), other cases, they may be dynamically applied at runtime.

Tessellation
Usually condition to use the tessellation, is that the model has polygons with more than four

edges (higher primitive order than triangle), and they should be subdivided.

So the operation is needed to create triangles in the end, starting with a higher primitive order

instead of triangle. In the end you can do any kind of tessellation you want. In general

tessellation means that I want to subdivide the mesh in a particular way, tessellation it’s a

triangulation (most common case). Other criteria are the convexity (must be), the maximum

area preset and the regular generation of sub-polygons with a fixed scheme.

It isn’t an easy process, and it can give some several possible issues with the model geometry.

This occurs with non-planar polygons and warping quads, but this problems origin from the

model itself.

This process can also be iterative, and with more iteration I can keep refine this result.

It got enabled in OpenGL after the 4.1 release, it uses the Tessellation shaders, it is used

Consolidation
One procedure commonly applied to polygons is merging, which finds shared vertices among

faces. Another operation is called orientation, where all polygons forming a surface are made to

face the same direction. Orienting a mesh is important for several different algorithms, such as

blackface culling, crease edge detection, and correct collision detection and response. Related to

orientation is vertex normal generation, where surfaces are made to look smooth. We call all

these types of techniques consolidation algorithms.

• Merging, I can do some optimization like merging the mesh, a model maybe can have

different area disconnect, where they are seen as a single mesh but actually are two putted

together. They visually look like they are sharing the edge, but actually in the memory

distinct triangles are involved, this is waste of memory and information. You get what so

called Polygon soup. In this stage before sending data on the GPU you try to merge the

double vertices and you try to avoid the repetition. Sometimes two vertices are so closed

that can be collapsed, this operation is called welding.

• Orientation, how the order of vertices composing the faces are distributed inside the data

structure. The direction of the normal is given by the order of the vertices following the

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

32

Right-Hand Rule. Counterclockwise order you get the normal pointing up, if the order go

clockwise the normal points down.

• Normal smoothing, the computation isn’t difficult but it’s tricky. You have the three

normals for the faces and you average in other to get the v vector in the center of the

image. The final vector is the vertex normal. On the left the bottom side is a quad, means

that they are 2 triangles so 2 normals equals, so counting the other 2 edges we got 4

normals and the resulting average vector isn’t correct because the two on the top got

double weight. The correct way should consider this issue, the convenient technique

consists in the use of the angle between the face and the normal as weight for the

average.

Simplification

It is also called data reduction or decimation; the idea is that I have the mesh, but I want to reduce

the number of the polygons (I want to use less vertices). I want to discard vertices, but I want the

final mesh to maintain the appearance of the original one. In RTGP less polygons we have the

faster the process will be, we may need to decimate a polygon because it’s to heavy and I want to

maintain high performance.

There are three approached to simplification :

• A static approach, Level of Detail (LOD)

• A dynamic approach, Edge Collapse

• A view-dependent approach, Terrain Rendering

Level of Detail (LOD) (Static)

When I have a mesh very close to the camera I will need lot of details, but when the same model is

far from the camera it may cover very few pixels in the final image. But in the end the same

number of pixels are computed by the GPU, the idea in LOD is to improve performance I have a

model composed by different version : the final one with lot of polygons and different version at

different level of simplification when I need to use the model I choose the more appropriate version

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

33

in base at the distance from the camera. The more distant is from the camera the simpler one I will

choose.

I need to create the different versions then at the runtime I need tochoose one and I need to switch

at runtime the new version with the one currently used; the generation is something that in the

classical LOD is done before the opening of the application by the modeler.

In the old days there was a phenomenon called popping, the computational power was low and the

LOD at a certain distance totally remove the meshes. So suddenly after the meshes get into the

visible step, the mesh suddenly pop out!

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

34

A fix was to do a blending approach to make a soft transition; this will make the computation more

intense but usually the transition is short. Instead of blending another opportunity is to use the

transparency, the model became transparent while it moves away, again this improves the popping

effect, but performance is better only after the model disappear.

Subdivision surfaces

It is used mainly for high-poly models for animations, is an iterative or recursive technique.

You have the first mesh then you create new vertices in the midpoints of the original triangle and

then you create the edges and faces, and obviously you create the curvature (Icosphere…). There

are different techniques the most famous is the Catmull-Clark, was one of the found of Pixar (the

code is now open-source), at the moment the subdivision of surfaces is used mainly for film

animation.

The selection of the level of detail is done by taking as reference the distance of the camera, this

means that the space is subdivided in discrete steps and each step is assigned a version of the

model.

Edge Collapsing (Dynamic)

Even if there are this approach to soften the problem of the popping to have a better switching

effect, in the last year considering the tessellation stages we are moving to a dynamic

simplification of the model having the LOD created on the fly directly on the mesh. These

techniques are based on edge collapse or edge contraction techniques. The idea is to delete the

vertex u and this comport the disappearing of the face a and b.

The idea is based on analysis of the local neighborhood to determine best option for the vertex to

collapse. Usually, you consider the vertex and you assign a cost to each of them, this means that I

take the set of triangles share the vertex, each triangle has one plane, so iconsider the equatiuon

of the plane and the cost function is the sum of the squared distances between the potential new

location of the vertex and the planes of the triangles sharing p.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

35

Example with a cube of size 2, suppose that we have cost(e) = 0 and cost(c) = 1, in the first case

means that we can collapse e into c, e doesn’t move from the planes it shares. In the second case

we collapse 𝑐 into 𝑒, 𝑐𝑖 moves away the plane on the right face of the cube

This process of edge collapsing is also reversable. If you keep trace the collapsing that you have

done, you can go back in the reverse order, without popping because we are dynamically change

it, this is the CLOD, Continuous Level of Detail. The tessellation Shaders can be used to perform

Dynamic Simplification.

Terrain Rendering (view-dependant)
The simplification is applied only to part of the model far from the camera, this is typical of outdoor

scenes where I have large terrain.

Other uses of meshes (Final Notes)

The mesh you have loaded in the RAM in the Application Stage aren’t used only for rendering but

even for other purposes in the Application stage like the physics simulation, AI , … needs this

information in a videogame there is a need of lot of other activities.

The topology of objects\scene may be used not for rendering but for other purpose (mesh used as

a graph).

For example, the navigation mesh.

A navigation mesh is a mesh exploited as a graph the purpose is to use it for pathfinding

algorithms in the game. The AI for videogames needs the pathfinding of the mesh for determine a

path, it can use a subset of original mesh, defined by the level designer or by automatic detection.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

36

Transformations and Projections
They are applied in different stages, the transformations are used for :

• Modeling, this means the placement of models (or parts of complex models) in the scene.

• Camera , this means the placement and orientation of the virtual camera and by giving a

sense of perspective.

• Animation, the transformations are applied and changed in real-time to create the illusion

of a smooth movement.

A cartesian coordinate system or a frame, is composed by :

• 1 Origin

• 3-Dimensional orthonormal basis

Possible coordinates systems :

• Local coordinates (or local space), where the position is expressed with respect to the

origin of the model, which usually is in the center of the object.

• World coordinates (or world space), from the moment I place the model inside the scene

the coordinate system changes, now the coordinates of the model are expressed respect to

the origin of the World Scene.

In the moment I load the model and I put in my scene, in the first very moment before

applying the transformation the model will be placed at the origin of the world then it is

moved.

The real name (or nature) of transformations are call it Linear Transformation, a linear function

which has these features :

The transformations are not all linear like rotation and scaling, linear transformations usually are

the ones who apply a transformation of vertices around the origin.

The translation isn’t linear transformation since the transformation isn’t defined around the origin.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

37

A peculiar characteristic of a linear transformation is that can be expressed by an invertible matrix.

(e.g., a 2x2 matrix)

Scale Transformation
Then I apply the linear transformation matrix as a function (since it is) to a point that I want to change, and

for do that you use the multiplication (M*x == M(x)).

The scaling matrix 2x2 is this :

Properties of scaling matrix :

• Scaling Factor < 1 , the model gets closer to the origin.

• Scaling factor > 1, the model gets further from origin.

• Sx != Sy, this means that is a non-uniform scaling, means that angle isn’t preserved (and so

proportions).

Rotation Transformation
Is a different kind of transformation, we can express the coordinate x,y by using the polar

coordinates (defined by magnitude and argument, where the magnitude gives us the distance from

the origin and the argument will say the direction of our point).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

38

Where the starting coordinates are expressed as :

And the rotated coordinates are :

Everything is expressed by using a 2x2 matrix :

Translation
As said, the translation is not a linear transformation, this means that isn’t possible to use a

matrix for represent that, it is expressed as a vector sum.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

39

Homogeneous Coordinates
Is a peculiar coordinate system used in the field of projective geometry, this field has an extra

dimension to the others which is called 𝑤, this four-dimensional space is called projective space

and coordinated in projective space are called homogeneous coordinates.

This new coordinate 𝑤 determines the scaling of the other components

Properties of 𝑤

• The 𝑤 coordinate must be different from 0.

• There is a proportion to be maintained with the 𝑤 coordinates and the x and y coordinates

(or and z in case of 3D transformation).

Inhomogeneous point : 𝑃(𝑥, 𝑦, 𝑧)

Homogeneous point : 𝑃(𝑥′, 𝑦′, 𝑧′, 𝑤′)

The main idea is this :

If we start from a 2D cartesian space and we move to his homogeneous 3D space, we get a set of

parallel planes. This means that any point expressed on the 2D plane will be expressed in the

remaining parallel planes of this projective space.

Then we can say that each point in the starting space (2D plane) has an infinite set of equivalents

points in the homogeneous space. This points from different planes differs by a factor of w. So, we

can say that the w is the identifier of a parallel plane in the projective space.

• When 𝑤 = 1 we are in the canonical form of the space (𝑥 and 𝑦 are multiplied by 1).

When you scale the coordinates by 1, the coordinates don’t shrink or grow, it just stays the

same size. If 𝑤 > 1 everything will look smaller, vice versa for 𝑤 < 1.

• When 𝑤 = 0 this is the convention used for defining a vector in the infinite space, by the

way this will cause your program to crash because will try to divide by 0.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

40

The transformations that use homogeneous coordinates are called affine transformation, where

lines and planes are preserved and so as well the parallelism, angles are not necessarily

preserved. An affine transformation is any composition of a linear transform with a translation.

The transformations are defined in such way with homogeneous coordinates, (so now they are

affine transformations) :

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

41

In the case of scaling matrix , there is a particular scaling where the factor is -1, this is called

reflection and it is done on the axes why got the scaling factor of -1.

There is another transformation which isn’t really common called shear or skew, it tilts the model

along one axis, it is a sort of deformation could be :

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

42

The parameters of the inclination are expressed by using an angle of :

It is very good to apply composition of transformation (functions), and it is really simple to do it

with matrices you just have to multiply between them. But, you have to take care about the order

of the product since matrices product is not commutative.

• The convention says that the order to follow is from the right to left, in base at what you

have to do.

o E.g. : If I want to Translate-Rotate-Scale, then I will have to multiply the matrices in

this way : Scale*Rotate*Translate

• In the case that i want to invert an entire composition of transformations, then you will have

to apply the inverse of each transformation of the compositions in the reverse order.

o E.g., Translate-Rotate-Scale , then I will have to InverseScale-InverseRotate-

InverseTranslate

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

43

Interpretation of transformations
There isn’t a right one, but there is another interpretation of the transformations. We have

considered the transformations to be applied to vertices but actually is possible to consider the

transformations to be applied to the whole reference system.

Affine Transformations in the 3D

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

44

Euler Angles
Unfortunately, we don’t have only one matrix for rotations, but we have three, one for every axis of rotation.

This is following the Euler Angles mathematical concept.

Using 3D rotations to combine the orientation of the object in the space is for sure simple to

implement, unfortunately this approach as some issues :

1. We have a problem with the interpolation, e.g. We want to move an object in another

orientation, usually this is based animation by using keyframes. The initial keyframe is

setup with a rotation and position and the destination keyframe as well. Then the system

will execute the interpolation between these two keyframes. The problem is that with Euler

Angles there isn’t a unique interpolation you don’t have control about this. You can’t

know what the result will be, and probably is different about what do you expect.

2. Another problematic is given to the fact that you can’t invert the rotation after the

compositions of matrices.

3. Gimbal Lock, this term comes from planes and how the planes flights, when you apply

transformation there is a concept called degrees of freedom that means how many axes

you can consider during the transformation. In our case three degrees of freedom, we can

move free above 3 axes.

If we rotate one axis about 90°, then what happens is that the two axes will collide and

became the same, and now I lose one degree of freedom. If now I rotate one of this two

axis I will obtain the same result !

Usually, API and engines use Euler Angles and matrices for describe rotations, these angles are

called Yaw, Roll, Pitch (from planes flight).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

45

You can avoid the Gimbal Lock by constraining the rotation, e.g. You don’t always all the three

rotations, in the camera you can avoid the roll for example. And when you do the rotation you can

avoid the full roam , going to 90° and go for a bit less like 89° for avoid the Gimbal Lock.

Axis/Angle Rotation
Is another way to describe the rotations instead of using Euler Angles. Axis/angle rotation, this is

another theorem from Euler, any rotation is expressible by an axis and a vector that rotate by an

angle around the axis.

This is more intuitive instead of using 3 separate matrices, and it is adequate for rigid body

dynamics.

It doesn’t suffer from Gimbal Lock, but by the way the issue with interpolation is still there.

Quaternions
The method which has no issues with interpolation Gimbal Lock involves the use of quaternions.

From the mathematical point of view, is an extension of complex numbers and it extends the axes

angle representation by using the complex numbers, it doesn’t have any issues with gimbal lock

and interpolation because it bases everything on two operations :

1. Conjugation

2. Multiplication

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

46

Proposed by Hamilton in 1843 in Dublin, he was a mathematician, and it was searching to find a

concept to express a perfect rotation. He was walking to the University and was under the bridge

where he got the illumination.

We define the quaternion in complex dimensional space :

𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘

𝑎, 𝑏, 𝑐, 𝑑 are real numbers and usually a is a scalar and b, c, d are vector components (of a vector

p). So, we can say that the quaternions q is q = [a, p].

The imaginary part is made by the 𝑖, 𝑗, 𝑘

And there is a property which says that :

He has proposed an algebra for the quaternions.

For rotations we consider the unit quaternion (where the length is = 1), given an axis u and angle

phi we express the quaternions like this :

There is a method to convert a quaternion in a matrix, so you can use it quite simple (need to

understand the overall concept of quaternion, we don’t need the whole mathematical

demonstration!).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

47

Perspective projection
This is another transformation that is being applied, it is called perspective projection, this

transformation isn’t about the object itself. With projection we do the passage between 3D to 2D.

This will setup the position, the perspective and the zoom of the camera so that in the end from the

shooting of the scene we will gain a 2D image of a 3D world.

To define a projection, we need one center of projection and a set of lines called projectors from

the center of projection to the vertices and a projection place, the plane where I want to project the

vertices.

There is another kind of projection above the perspective, the so-called parallel projection (or

orthogonal projection) where the projectors are parallel.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

48

In Computer Graphics we use a simplified model for the camera, the biggest difference is that in

real life we use a lens on the photograph. In the virtual camera from CG, we use this concept

similar to the pinhole camera model.

The idea is that the camera is a pinhole-camera, which is a box where is placed a hole on an

edge (stenopeic hole) and the length from that edge to the opposite is a value d, which is called

focal length, by changing that value it changes how the information is acquired.

On the real pinhole the image is saved on a film placed on the other side of the stenopeic hole, the

image is saved as upside-down this due the ray-light orientation and direction that hits the film.

Without the lens we have some part of the image in focus and other part of the image not in focus,

in Computer Graphics everything is completely sharp this to the fact we don’t have a physical

simulation of the lens (when there is a blur in the image usually it is added in post processing or

made by an appropriate engine).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

49

But actually, the real camera convention used is Computer Graphics is another one, which is

different from the pinhole camera because the image plane is above the hole.

Usually, we use two kinds of projection in Computer Graphics :

• Parallel projection, where projectors are parallel to image plane.

• Perspective projection.

Canonical configuration for parallel projection
The first thing it has to be define is the canonical configuration or also called basic

configuration.

The canonical configuration for orthographic (parallel) projection starts from a 𝒙𝒚 plane which is

the image plane with projectors parallel to z-axis.

This is done by using a matrix, if you take your original point 𝒙, 𝒚, 𝒛 after the parallel projection and

multiply by the matrix, this will end by setting the 𝑧 coordinate to zero.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

50

Canonical configuration for perspective projection
The canonical configuration for the perspective projection has the center of the projection in the

origin, the main projection axis extends along the negative z-axis (left-handed OpenGL style

coordinate system).

The projection plane (the first plane) is parallel to the 𝒙𝒚 plane and is set to a certain distance -d

from the z-axis (since we are using negative z-axis), the -d distance is the focal length of the view-

frustum.

This concept is also explainable by using the similar triangles :

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

51

• 𝑑 is the focal length.

• 𝑧𝑠 is the 𝑧 coordinate to project on the projection plane.

• 𝑦𝑠 the 𝑦 coordinate to project on the projection plane.

For the similar triangles rule the proportion between 𝒚𝒔 and 𝒚, and for 𝒙𝒔 and 𝒙, there is a

mantained proportion :

This means we can determine 𝒚𝒔 and 𝒙𝒔 by simply taking the ratio between y and z and we

multiply for the focal length (same for the x).

If we express this using a matrix we have something like this :

As result we have a vector (should be vertical)

To go in the canonical form with homogeneous coordinates with w = 1, I have to dived everything

by z (perspective division).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

52

The problem is that I will never use a canonical configuration in my scene, usually my camera is

placed away from the origin, and it is oriented in a different way, or in an FPS game I keep moving

the camera by controlling the avatar.

This means that the camera is placed somewhere else (not the origin), this means that the

projection plane is not parallel to the 𝒙𝒚 plane.

The solution is given by moving whatever orientation the camera has it, in a way that I convert it to

the canonical configuration, so I rotate the camera until the main axis are equals to the canonical

configuration axis, this is called View Transform, it is a transformation, and it is done before the

projection transformation (perspective division).

View Transformation
There are needed translations and rotations for have everything matched with the canonical

configuration.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

53

In green we have the coordinate system of the camera, where E is the position of the camera. By

applying this transformation, we have in the end the reference system of the camera equal to the

reference system of the world.

Look At
Often in Computer Graphics we use a convention to define the camera reference system, it is

called the Look At approach, I need to define in my scene where the camera is placed and where

is looking at. We can define the position of the camera in a quite simple way, the point is that could

be tricky to define the orientation of the camera by using Euler Angle.

The camera frame is defined by an orthonormal basis (in the image 𝒖, 𝒗 and 𝒘), the position of the

camera is defined by a point (in image the point P), the direction of the camera is defined by a

vector/versor (in the image the Look vector), and the global camera orientation is defined by

another vector (in the image the Up vector).

The Up vector is mainly used for creating the remaining basis vectors by using the cross product

(and sometimes vector sum/sub), the Up vector sometimes is the y-axis, but this isn’t always the

case especially if you are pitching.

In the end for creating the camera orthonormal basis you just need the Look vector, Up Vector and

the point P (this is helpful for determine the vectors). You then use the coordinates of the basis as

a rotation matrix.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

54

This matrix will rotate the origin to the axis of the camera, but it still needs to be translated to the

origin, so we apply a second matrix. It is like saying, move all the world as it (with camera

orientation) is to the origin, and then rotate it as it matches the word-origin system.

In the end it is the composition of the translation to the origin multiplied by the rotation we have just

build ,we apply this to all the object in the scenes. This will make all the world being converted in a

reference system which is expressed by the camera since now it is place at the origin of the world.

View-Frustum
In Computer Graphics we express not only the center of projection the camera, not only the focal

length we even express a so-called view-frustum. This is the volume of visible objects placed in

the scene. We express this volume as truncated parameters centered in the center of projection

and limited by two planes the near-plane and the far-plane.

The usually the near-plane is the projection plane, everything which is between the near and the

far is visible when an object is more distant then the far-plane then the object is not more visible

(going outside the far-plane could end in a “popping” effect).

The view-frustum is composed by :

• 4-Sides

• Near-plane

• Far-Plane

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

55

Sometimes the view-frustum is defined by using the aspect-ratio, other times by directly using the

position of each side planes composing this truncated pyramid.

The near-plane, aka the projection-plane can be defined by :

• Focal length d, width w and height h.

• Using FOV, which is an angle that express the view volume of the aperture, this is more

intuitive, and this approach is similar to the zoom in or out of the camera.

You can put in relation the focal length d and the w and h of the image plane and the FOV:

The canonical view volume
Just because we are in a virtual world, we do something which may appear quite strange, but we

do it because it really helps in speeding up computations and to help one operation that we will do

after projection (the clipping). What really happens inside the rendering of the GPU pipeline, after

the view transformation we actually don’t apply that matrix once we are in the canonical

configuration. What really happens is that all the world will be deformed in such a way that the

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

56

view-frustum from a truncated pyramid will become a cube, this cube is called the canonical

view volume.

In this way the near plane will be parallel to the 𝒙𝒚 plane (OpenGL use unit cube, DirectX use the

half cube).

When you apply this deformation of the view-frustum the coordinates changes and they are called

Normalized Device Coordinates (NDC).

We do this operation for two reasons :

• The projection does not need anymore the metrics with the d on the main diagonal, we

don’t have to apply the perspective matrix, we will apply the matrix for an orthographic

projection.

o Keep remember that the objects inside the view-volume will be distorted.

• This change of the perspective projection matrix over the canonical view volume matrix will

speed up the computation for the projection and the clipping stage.

As you have noticed in the case of projection we have some not uniform notation in the various

resources, because it depends by the coordinate system adopted.

You may find differences in the matrix used for the conversion to the canonical view volume,

there are different ways to define this kind of matrix. (In the book there are three or four different

version of the same matrix).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

57

• f, is the far plane.

• n, is the near plane.

• fovy is the vertical fov.

• c, which is the reciprocal of the tangent function that has fovy/2 as parameter.

• A is the aspect ratio.

This is the most common matrix :

Putting everything together we got the canonical-view-volume matrix combined with the

transformations needed for the view-transform.

With this we have finished the transformation applied in the Vertex Shader.

Window to Viewport transformation
After the clipping, which is done in the canonical view volume (we will see it later), there is

another transformation done on primitives to screen coordinates.

When we convert to the canonical view volume, then we do the clipping which will be easier (and

faster) on a cube.

Then we rasterize it, where we elaborate the set of potential pixels called fragments, which if they

passed the z-test they will become the final pixel in the scene.

These fragments are created as they would be pixels on the image.

We need to convert the NDC to the width and height of the final image on that will be saved on the

frame buffer and then showed to the screen, this transformation is called Window to Viewport.

This happens mainly in 2D, since the projected coordinate are NDC, and they are expressed inside

a range of [-1 to +1] to screen-space coordinates which are expressed in a range from [0 - number

of columns] and [0 to number of rows].

This information is known since we know the dimension of the screen or window where we want to

render.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

58

On the left we have the NDC image (output from the previous stage) and they are mapped on

screen on the right.

What really happens is a composition of translation and scaling in 2D.

1. The roof of the house (the red) is clipped.

2. The projection plane is translated to the origin.

3. The projection plane is scaled to the dimension of the window of the screen.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

59

4. The position of the “window” (the projection plane) is translated (mapped) to the position of the

window on the screen.

In the end we have the coordinates of the vertices expressed in screen coordinates, when these

coordinates will pass to the rasterizer all the fragments will be expressed in such a way that if they

become “final pixels” they will directly go on the screen with no more transformation.

Remember, the order of the projection transformation is :

1. View Tranform

2. Perspective transform. (Canonical View Transform)

3. Clipping

4. Window to Viewport transform.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

60

Spatial Data Structures
There are other techniques that are introduced in the pipeline in several parts, but in particular in

the Application Stage (before transferring the vertices to GPU).

This family of techniques are made for accelerating rendering, the point is that day by day we are

keep increasing the number of polygons to process and we still need to maintain a fast

performance of framerate constant.

Spatial data structures are data structures which are used to organize the data of the scene and

objects inside my scene in order to speed up different computation which will make faster all

rendering process.

In the Application Stage we have lot of situations where we have to queuing the actual position of

the object, for example the collision detection because we want to know if the objects are

colliding or not. The spatial data structure will help to organize the objects in a specific area of my

scene.

Usually, the data structure are organized in a hierarchical way, and their creation is a

computationally expansive generation this is why is done in pre-processing. This anyway will

comport a performance improvement from O(n) to O(log n).

There are different data structure used and some of them can be combined, the most common are:

• Bounding Volume Hierarchies (BVHs)

• Uniform Grid

• Octrees

• Binary Space Partitioning (BSP) Trees

Bounding Volume Hierarchies
A Bounding Volume is one of the most used approach, it is a simple shape that represents a

volume which encloses the original model as tightly as possible, usually we use sphere or boxes

and I take the object and I putted in a sphere or in a box as tight as possible.

They are mainly used for preliminary test, for example to know if they are colliding, the idea is that

by using this simple shape for do simple test this test will return some information about the

Bounding Volumes that will avoid the program to do more complicated test on the mesh level (test

collision with bounding boxes is easier than doing it on).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

61

These volumes can be put in hierarchy inside a tree, where the single objects are the leaves. and

then I can put in hierarchy different sets of the objects. The three objects on the bottom in the

same group. Each leaf got a bounding sphere, and each node of objects will be a Bounding Box.

In this way i can check the largest object in the room to see if i need to do some computation in

that zone, without having to do it on each child of the node these boxes are affected by some

computation.

The Bounding Volumes shapes can be :

• Bounding sphere, consider that the sphere is not so easy to build, is not too easy to find

the minimum radius of the sphere in order that contains all the object. The sphere is not the

tightest of the object, this will result in lot of false positives.

• Bounding Box, more efficient from sphere, we have 2 types :

o Axis Aligned Bounding Box is a box which is aligned with the axis of the world, it

is easy to build so I take the object and I simply process the vertices and I search

for the minimum and maximum of the 𝒙, 𝒚, 𝒛 axes. It is easy to build and easy to

use it for test, but the size of the boxes is fixed parallel to the position of the world,

means that if the object rotates the box must be rebuilt. Still not very tight.

o Oriented Bounding Box, this is a more efficient version of the Bonding Boxes, in

this case the box follows the model orientation, it is really tight around the geometry,

and we don’t need to recompute it when it rotates, because it will rotate with the

object.

It is usually built-in local coordinates, when the object is loaded before applying the

transformation, is a more bit complicated to build, once the object is created the

same transformation applied on the mesh are applied on the box (like a second

mesh attached to the object mesh).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

62

• K-DOP (Discrete Oriented Polytope) is a generalization of Axis Aligned Bounding Box,

we introduce the concept of SLAB.

The SLAB is a composition of three arguments, a normal vector and two values along the

vector normal which express two planes perpendicular to the normal vector, the two values

will define an interval.

In the image if we take n1, it is a horizontal normal vector with the two values of the slab

d1min and d1max which are giving the minimum and maximum interval parallel to the

direction of the normal. So, the slab is given by this three, and it defines a certain area in

the space, the idea is that you can define a set of normals and intervals in order to cut a

polygon that will be closer to the mesh object.

• Convex hull, this is the smallest volume containing the original vertices. The more external

vertices of the convex hull are vertices of the original mesh. You build a convex volume

which contains the original mesh.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

63

The better it fits the original object the better is the result of the test, more accurate. An intersection

test giver you, the simpler is the bounding volume the simpler is the construction and simpler will

be the test but obviously less accurate.

Uniform grid
The are other approaches more scene based, we may have many objects similar (like different

instances of similar objects) which are placed in the scene.

We may need to do the test about the interaction between these objects with another closer to it. In

this case having a Bounding Volume may not be the best choice.

We can divide the scene in uniform cells, and we can keep a table or hash table regarding in

which cell the objects are placed. I simply take one cell at the time only among the objects inside

one cell since they are close enough to collide.

The same is for launching an object and wanting to know which object I’m hitting; I will check one

cell to see if there is an object if that is the case I will move on or a more specific test. Even if

uniform grids have some issues, is possible to use that on some occasion or by applying together

with different data structures.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

64

Octrees
It is a tree structure, and it is based on the recursive partition of the 3D world; it is made by 8 trees.

We start from a Bounding Box of the whole scene, then it divides the world in 8 cubes (or octants),

then I’ll dived again some of these octants in other octants but not all of these “big chunk” (or

starting octants) only someone who hit a certain number of objects.

Then I iteratively keep subdividing in this way, the problem is when one object got subdivided by

an octree, an option is that so you can assign that object to two nodes.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

65

Binary Space Partitioning Trees
The point is that the dimension of the cells which is uniform in the octree, because I divide exactly

in the half of the octant, and obviously this solution can have issue if we have objects non uniformly

placed in the scene.

The BSP Trees is a data structure which is more adaptive, the idea is that we divide the space in

two not in eight, we decide an axis and we divide in two parts respect the axis, even the position of

the plane is not perfectly in half it is based on the content of the scene.

This is surely more complex, because you have to analyze the scene to understand where you

have to cut but is more effective, we will talk about the Axis-Aligned BSP.

Axis-Aligned BSP

Mainly it is a kd-tree (where k=2, so a two-dimensional space)

I have to determine :

• The axis to subdivide

• The subdivision planes

After this I evaluate the composition of the two subspaces, this will be repeated recursively until

termination criteria are satisfied. The main idea is to separate less dense area, which I can avoid

subdividing.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

66

There are issues when I have polygons crossed by the subdivision plane (like octrees), it is not a

simple decision what to do, it depends on a determinate situation :

• I can assign one node only, but how which ?

• I can assign that to both nodes, but this bring a repetition in the tree.

The main characteristic of the BSP-Trees is that I decide where to cut, because we have not a

fixed subdivision (like octrees).

In this extreme example, if I divide in the middle I’m in an octree situation

The correct approach is to have an optimized split, just at the beginning of the group of triangles on

the right, in order to have the right area very tight without not too many empty areas in the volume.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

67

How it is possible to decide this ?

I have to apply some heuristic algorithms which analyze the size of the scene in order to optimize

the subdivision.

Scene Graph
Spatial Data Structure mainly are made of trees or graph giving a spatial organization of the

model. There is also another graph data structure which is the Scene Graph (very common) it is

more logical organization of the scene than spatial; it considers all the features involved in

rendering.

• Transformations

• Materials

• Textures

• LoDs

It is not creating for optimization or acceleration, this is a logical description of the logical

relationships between objects in the complex scene, for providing information to the rendering

process of the game engine. Each node of the graph could be a light, model, camera, … the

connection between nodes results in a relationship between these elements.

The use of the graph for the spatial data structure is totally different from the use of the Scene

Graph (it won’t speed up anything).

The edges (so the connection as I said before) represents a relationship between the elements

(nodes), this will create a hierarchy.

Several nodes can be connected to the same child node, this will result in a DAG.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

68

We have a hierarchy of the bounding sphere but in that case it is a tree, M and N are two

transformations where M is applied to both purple and orange object where N only on orange, the

leaves are representing the main model of the object that will be transformed.

There is the scene graph representing a hierarchy for an articulated model of a robot, where you

have two sub-trees for the upper body, lower body and subdivision for both the part.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

69

Often you don’t see a tree-structure but consider that transformations in the Scene Graph

sometimes are seen as nodes instead of edges, the connection between this nodes and model

nodes means that the transformation is applied to the object (or more the one).

In the case that the model has child nodes, this means that the transformation is applied to the

subtrees, in this way i can represent a CTM, Cumulative Transformation Matrix

Object o1 -> CTM = T1

Object o2 -> CTM = T2T3

Object o3 -> CTM = T2T4T5

The Scene Graph helps understanding the order of transformations of all the different parts of the

subtree.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

70

API for Graphics Programming
Mainly when we talk about Graphics Programming we have different level of abstraction we can

use, from low to high.

• The lower level is hold from drivers, where a set of routines are mapped to the GPU,

usually these drivers are provided by the hardware manufacturers, and they are hardware

dependent and from the computer it is using.

• The API for Graphics Programming are living on top of the drivers, so they are at a higher

level of Drivers and they provides a set of procedures used only for graphics, so this type

of procedures will get translated in driver instructions. We usually rely on some API for

communicating to the GPU through the drivers. API are at a certain low-level of the

possible tools and framework for graphics programming.

• Game engines are something that are at more higher-level and easier to use for graphics

programming. They are a tool for the development of programs, so it consists of more tools

inside a one. Usually, the abstraction of a Game Engine is higher of an API, because the

aim of this one is to give reusable tools to the developer for creating the game.

There is two kind of game engine :

o “Higher level” Game Engine, this is the situation right now, the main choice is

Unreal and Unity. This has an impact in particular in the past years, relating to the

professional figures in graphics programming. In the sense that actually we have

really a separation between the developers using the game engines to develop the

final games and developing the game engine by using other tools.

o Game Engine (low level), which doesn’t have any kind of GUI (for procedural

games). There is not lot of kind of this game engines like Ogre3D, Panda3D,

Love2D or some proprietary engines developed by studios for internal use only.

There are also other visual tools for multimedia production used, but not for videogames but for

interactive application like art, museums and so on… usually they are node-based application with

a limited amount of assets.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

71

Direct3D
Is the API proposed by Microsoft it is part of the DirectX which is actually a set of API for different

multimedia app. Obviously you can develop application only for Windows using this one, it was

created explicitly for the development of videogames on PC and XBOX.

Historically the are lot of discussions, in particular the first version but from the version 9 the

discussions received a better feedback.

- The current version is Direct3D 12, at the moment this is more similar to Vulkan that then

to OpenGL, before was more similar to OpenGL.

Direct3D 12 is closer to the hardware, lower level of abstraction (less easy to use), this for have

a better control of the multithreading and for decrease the CPU utilization during games.

Direct3D has its own shading language which is HLSL.

OpenGL
The main difference is that OpenGL is not an API, it is a specification. The Khronos Group,

which is a consortium of different entities which discuss and produce rules, once the rules are

approved there will be released a different specification of the API (so on Linux the OpenGL is a

different specification from the one on Windows). This is why it stands “specification”, because we

are using a specific version of the library.

OpenGL was born in C, but then in the years we have binding with several languages. OpenGL

was not born for videogames but for industrial applications (graphic workstations), as an

evolution called IrisGL (an API developed by Silicon Graphics, SGI).

The shading language for OpenGL is GLSL.

Direct3D vs OpenGL
Until Direct3D 11 we could say that this sentence/comparison is completely true, but right now with

Direct3D 12 the comparison moved to Vulkan.

The history of the two API was completely different, which the first is owned from Microsoft, from

this point of view it had a more regular evolution.

OpenGL Evolution
The OpenGL evolution of the specification was more difficult, because was given from the

discussion from different partners. The idea is that we had the specification and then every

manufacturer developed their own extension (the extensions are an actual hardware piece!) to

OpenGL on hardware, and there was some mechanism to access this extension, the issue is that

we have some code which looks cross-platform but executed on another architecture will give an

error because the GPU doesn’t support that extension.

- The first version, OpenGL 1.0 was produced in 1994, and until 2004 we had a fixed

pipeline (I couldn’t develop anything, no shader support just a black box).

- OpenGL 2.0 introduced programmable shaders, so we could decide how to process the

vertices and how to create and compute the final pixels on screen. However, that wasn’t the

only way to approach to the GPU and graphics programming :

o Fixed pipeline

o Programmable shader pipeline

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

72

This because a straight switch to the programmable shaders pipeline would have made

unusable all the older code of the fixed pipeline, so the fixed pipeline was still present.

- OpenGL 3.0 introduced some specific mechanism in order to remove the functionalities.

This because the previous situation was a mess, too many things to maintain, so they

decided to simplify the OpenGL pipeline and still trying to maintain the compatibility with the

previous release version (but not completely compatibility with first versions).

They introduced data structures called context, this context will describe the overall

approach to the use of OpenGL 3.0 (contains the shaders and other data).

o Full Context, which means that includes everything. A code which is compiled, and

it express the uses of the full context compiles because all the functionalities of all

the current specification and also the one deprecated from the previous version.

o Forward Compatible Context, in this case the code will compile only if calls for the

current specification are done.

The idea is to distinguish between the modern code and old code from previous version

(partially adapted, but still rely on deprecated calls).

- OpenGL 3.1, 24 March 2009, they decided to remove all the deprecated functionalities,

they analyzed the most part of the code and it was already updated enough to truncate the

backward compatibility.

From this version the fixed pipeline died, and the programmable pipeline with GLSL was

the new standard. This means that the applications must use shaders, and that the data of

the mesh must be read from the GPU memory, by using the buffer objects (not more

instant methods to read the mesh from the main memory).

They introduced a specific method to access the removed functions, this was the OpenGL

ARB.

- OpenGL 3.2, 03 August 2009, introduced the Geometry Shader and introduced Profiles,

it is another level of sophistication in the definition of the state.

They have spitted each context in two profiles.

Full Context :

o Core profile, it includes all functionalities of current specification deprecated and

not deprecated.

o Compatible profile, it includes all the functionalities of all the previous and current

specification.

Forward Compatible Context

o Core Profile, it includes all functionalities of current specification

o Compatible Profile, not supported (has no sense).

- OpenGL 4.1 introduced two new stages of Tessellation Shader

The current specification is the OpenGL 4.6.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

73

In the last years we had a fork of OpenGL

• OpenGL ES, which it is used for embedded system (used for mobiles). Current

specification 3.2, August 2015, the pipeline of OpenGL is mainly based on OpenGL 3.3, so

it is a programmable pipeline which uses GLSL ES (is a subset of GLSL language).

• webGL, it is the OpenGL ES for the web, for years there was different solution that

simulates the 3D rendering in real time for browser, but the main issues in the past was

given by the dependency of plug-ins to render the graphics.

Mainly it is a Javascript API, and it uses element from HTML5 like the Canvas and DOM

(Document Object Model), this means that it is natively supported by modern browsers. It is

really more recent project, the first specification was proposed in March 2011 which was

using the OpenGL ES 2.0.

The current specification is the WebGL 2.0 released on 2017 January, which is based on

the OpenGL ES 3.0 .

Vulkan
Has been considered the successor of OpenGL, released from Khronos Group at GDC 2015. It is

based on Mantle API proposed from AMD, which is a new generation of API, then they decided to

open the specification and the Khronos Group decided to use it as basis for Vulkan.

The NVDIA published the first driver with Vulkan support on 7 March 2016, the current

specification is 1.2.172 released on 8 March 2021.

Main features :

- Lower-level API, much more then OpenGL, this gives more control on different aspects.

- Optimize the balance between GPU and CPU usage.

- More control on multithreading

- Better scaling on multi-core CPUs

- Native multi-GPU supports, like SLI or Crossfire, the idea is to move something that run

on more heterogeneous system so with different GPU models and still having the same

power of computation.

- Intermediate binary format for shaders, the SPIR-V, the shaders in OpenGL are

compiled at run-time by the application. With Vulkan we moved to a different approach,

which will precompile the shader in SPIR-V and then we load this intermediate at run-time

without having to compile (much faster, this will give initialization speed-up, and a large

number of shaders can be applied on the SPIR-V file).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

74

Vulkan vs OpenGL
Vulkan is probably the future, it is more suited to the right now hardware. OpenGL started in a

difficult way and can’t reach what Vulkan is going to reach. The problem with Vulkan is given by

the fact it is really hard and at a lower level then OpenGL, much more lines of code just for

setting up the application. It can go to a really sophisticated level for managing the multithreading

of the application.

Metal and fragmentation issue
Metal is the API proposed from Apple for iOS and macOS, it is mainly an API that has features:

- Low CPU overhead.

- GPU performance optimization.

- Shared CPU and GPU memory.

- Pre-compiled shaders (like Vulkan).

Now the choice of Metal by Apple as lead to a fragmented situation, in the sense that Apple as

decided to not adopt Vulkan natively and so even if now it has been granted by the moltenVK

library (an additional library between the macOS and Vulkan, released on February 26th 2018) the

point is that it has created a singularity in the environment.

Even because the OpenGL support has not been updated, so it is still at the version 4.1, this

creates a difficulty in the development of different game engines.

The fragmented situation

Limitations of using APIs for Graphics Programming
The Graphics API provide only the graphics rendering, this means that every other functionality

must be implemented separately (external libraries for I/O, Window Management, Audio, …).

In the developing of video games\interactive applications, several other disciplines must be

considered.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

75

A Game Engine is a high-level support for development, which is independent from a particular

API. Composed by a set of sub-engines for the development and management of resources. A

Game Engine is identified by three main keywords : Modularity, Flexibility, Reusability.

Game Engine – Reusability

The Game Engine architecture is a Data-driven architecture, means there is present a big split

between assets and software components. There is a possibility to reuse the same modules for

different applications with different contents.

This is not always achievable, not all game engine has been designed with a high level of

separation. Each game genre has different peculiarities, some genre has a higher level of

reusability for a specific genre than another.

Game developer vs Engine developer

In recent years there is a split between developers, the one who develops the Engine (Engine

Developer, develops all the wrappers for all APIs, for every target and development platforms) and

the one who develops the Game (Game Developer, uses the game engine and its tools to develop

a game).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

76

Culling and Clipping
Cull is the act to remove elements from the rendering pipeline elements which are not useful for

the creation of the frame (this will speed up the creation of the frames).

• Visibility Culling is a set of technique that prevent meshes to be sent to GPU (the fastest

element sent to the GPU is the one that I don’t send), so happens on CPU side.

• The Clipping it is done on the GPU, it is the process of discarding the primitives which

goes out of the defined window region.

During Physics Simulation, AI and Collision Detection they must consider elements even if they

are not visible, so we have to distinguish among not sending an object to the GPU because is not

visible and eliminating totally the object from the state of the application because is not visible.

This are techniques that avoid the GPU to do a partial computation or complete.

The techniques aren’t performed in the same point, they differ the location between CPU and

GPU.

• The View Frustum Culling, Portal Culling and Occlusion Culling is done on the CPU.

The Clipping is done on the GPU , on a specific stage after the projection. There is a

culling operation that it is available to use on the GPU it is the back face culling it is

applied in the Vertex Processing stages but it isn’t the first to be performed. The GPU

culling techniques doesn’t allow the full control (the CPU yes!), they are enable/disable

only.

VISIBILITY CULLING SET

Proceeding in order of complexity (they are applied in different order inside the pipeline).

Back face Culling
This is implemented on the GPU sides and through the Graphics API I can only enable or disable

it. If we have an object, composed by faces, each face is composed by a front face and back

face, the one has a positive direction of the normal (vice versa for the back face). If an object is

closed I don’t see the back face, but actually the pipeline is processing both the faces of my

mesh, so if I activate the back face culling I can tell the GPU to discard the computation of these

faces and saving the resources.

There are two kinds of tests, the first one is done in screen space, after I converted the view-

frustum in the unit-cube, I got my projected vertices, then we compute the normal of the projected

polygon and then comparing that with the positive z-axis (by using the dot product, it will give me

a 3D direction) of the world (this will change with the implementation of the world coordinate

system).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

77

The other test is done in eye space, this means that all my vertices are expressed in view

coordinates (3D vertices), so we have done the view but still not projection. In the view volume

will happen the computation of the vector from a polygon point to viewer. After that there will be the

computation of the dot product with the normal previously calculated, in this way we can check if

the angle is greater than 90° (back face).

Hierarchical View frustum Culling
This operation is done on the CPU side, so on the Application Stage of the graphics pipeline. The

main thing that happens is that if an object is outside the view-volume of this frustum then it is cut

away.

Anyway, this comparison is done between the Bounding Volume of each object and the frustum.

• If the Bounding Volume is totally outside, this means that the object represented by the

Bunding Volume is surely outside. Then it won’t be sent anything to the Geometry Stage.

• It the Bounding Volume is inside or partially inside, then the object represented by the

Bounding Volume will be sent to Geometry Stage to be rendered.

By exploiting the Bounding Volume Hierarchy is possible to enhance an optimization of this

operation (like maybe avoiding sending multiple objects to the GPU), by comparing each Bounding

Volume with the frustum.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

78

There is a particular intersection test done between Bounding Volume and frustum planes, will

be seen in the future.

Portal Culling
This technique is applied when we have complex indoor scenes (inside a building with lot of

rooms connected by doors), because in this the view-frustum culling is spanning completely the

room, it is a situation similar to the Occlusion Culling, the idea is that usually I have the wall and I

have some door or windows that allows me to see in the next or closer environment but not all the

environments.

We consider the doors or windows as portals, and rooms are subdivided in cells, this is a complex

data structure often build ad-hoc for each scene. Using the position of the viewer, in the direction

where him is looking we can cull away a lot of geometry.

In the schema below we saw the larger FOV (which is the view-frustum) and we can cull away lot

of geometry from the rooms, we can do several calls to the View Frustum Culling Techniques by

changing the view frustum FOV to making fit the angle of different portals of the door. The lighter

greys which pass to the door, doing that we can send to the GPU the part of the room that we can

show from the door and discard the rest.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

79

Occlusion Culling
This is the most complicated technique; I may have an object which is inside the view-frustum,

but it is occluded by another object in front of it. This is a technique that tries to understand if an

object is covering the view of another because is not visible in the ending frame.

The is that if we just rely on View Frustum Culling,(which is easy to perform) we for sure gain

performance but after that we don’t have any other control until the Z-buffer test, which will solve

the visibility problem. We may apply another technique to avoid this useless processing of

geometry earlier (in the CPU side), this is the Occlusion Culling. This maybe an option for large

cities or indoor scenes, with lot of buildings that occludes, if you look at near you only see the

nearest buildings but not the others which are loaded anyway in the GPU (with Occlusion Culling

disabled of course).

The advantage of having another Z-buffer algorithm earlier on the CPU side is that I can avoid

sending to the GPU the geometry that would be processed by the Z-buffer test anyway, and as

we know the fastest thing that the GPU can compute is the one which isn’t sent to it.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

80

The View Frustum Culling has no idea about walls that are occluding the objects, so the

Occlusion Culling will discard the occluded objects inside the View Frustum.

The second image show what the View Frustum loads, the third show what is getting computed

on the GPU with the occlusion culling enabled.

These are really effective techniques, but not really easy to apply it and not really easy to

understand it.

We can do the test in the image space or in object space :

• Image space, I do some projection in order to have the vertices projected on 2D plane and

I do a visibility testing in 2D.

• Object space, this means that I test visibility in 3D in world coordinate.

These are techniques which benefits from some sort of front to back sorting like using BST or

Spatial Data Structures. Because even a small object closer to the camera can occlude lot of

objects, so with front to back order we can check first the objects to the camera, because that

object is the one which will occlude more inside the view-volume.

Occlusion Culling is mainly done on the CPU, but more recently there are examples of Occlusion

Culling implementation on the GPU, the idea is to do :

1. First render of the GPU simplified , with just the bounding boxes (query on visibility set).

2. If they are in the View Frustum then they are visible, but potentially occluded by others,

so we sent it to the GPU.

a. We process the one sent to the GPU on the Vertex Processor by applying the

transformation and projections on the Bounding Box (very limited number of

vertices).

b. We rasterize them (no fancy lighting)

c. Depth test

d. We count the number of pixels which passes the Z-buffer test, if this number is

equal to 0 this means that the bounding volume is occluded, in the real render pass

we won’t send them else if the number of pixels > 0 we can consider a threshold of

fragments visible.

3. If outside we discard them.

On pipeline cycle for render the bounding volumes of the objects for checking if the bounding

volumes are visible or not, then to the second I will send only the meshes of the visible bounding

volumes (which have passed the depth test on the first pass).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

81

It is a knife with two sides, these techniques use two GPU passes for one frame rendering, if

everything is setup well and the test succeeded then we gain performance.

If the test fails, we lose performance, because if we apply the Occlusion Culling in a situation

where aren’t present lot of occludes, the first pass will be useless, because we will pass the mesh

to the GPU in the second pass anyway.

It is not a technique which can be used in any situation, is something that must be considered

and evaluated considering the scene we have to render (so when we have lot of occludes, large

cities, indoor scenes, …).

There are different proposals to optimize this process :

• The use of hierarchical structures like the BHV or octree..

• Optimizations to avoid CPU stalls while waiting the query response. Because the problem

is that the second cycle of the pipeline stage, in the Application Stage based on the result

of the first cycle must pass the visible meshes to the GPU.

In this way the CPU must wait until the first cycle (which will render the Bounding Volume or

the Convex Hull!) is performed. To avoid the CPU stalling we can use additional

techniques, like the exploiting of temporal coherence or using the query queue.

Clipping
Clipping it isn’t actually a Culling Technique, it is applied after the projection, and it discards the

primitives which are not visible inside the projection volume (Canonical View Volume).

This means to actually to create new vertices and edges in order to keep only the necessary

information.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

82

Going back to the Projection Matrix, then one which transforms the View Volume of the frustum

in the Canonical View Volume.

If we apply the projection matrix to a point of the coordinate system we should get a perfect

transformation, but this isn’t actually true because we get the 𝑤 = −𝑧 instead of 𝑤 = 1.

There is another fundamental passage called Perspective Divide, so we divide all the vector by

the content of 𝑤 (−𝑧 or 𝑧 depends on the coordinates), this will give us the projected vertices we

want to keep.

At this point, the things are a bit more complicated for clipping, because actually the clipping will

occur earlier then perspective division which will give the clip coordinates, after that we apply

the perspective division, and we will have the NDC.

1. The projection matrix will express to us what we want to shear by using the

transformation, this will give us the Clip Coordinates expressed in a range [−𝑤’, 𝑤’], with

the 𝑤’ > 1 (𝑤 of the vector that got multiplied is equal to 1).

2. Clipping of outside view volume primitives.

3. Perspective Division which will take the Canonical View Volume coordinates (clipping

coordinates) and normalize them inside the range [−1, 1], now they are the Normalized

Device Coordinates.

4. Rasterization

Usually, these passages are simplified in books, because we don’t have control, they just saying

that the clipping is described as if applied to NDC, which is wrong!

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

83

It is important to distinguish between clipping coordinates and clipping, the first one is the output

from the Vertex Shader (usually after the projection matrix), the second one is the operation of

cutting out the not visible primitives.

In the past the approach (obsolete method) the idea was to find the intersection between the

side of the cube and the polygon and then to create new vertices subdividing new triangles

and then rasterize the triangles.

In the current approach, we do a Bounding Box around the primitive and then we intersect

between the view volume and the Bounding Box, we keep only the intersection.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

84

Rasterization
For rasterizing that area, we aren’t going to use the scan conversion algorithm, this is not

doable because it is not really fast for a parallel computation.

We use a test called half-plane test.

If I have a point p and i want to know if it lies on the same side of a line connect v1 and v2, if I

want to know if p is on positive side of the line or negative I do the dot(a, b), if the result is greater

than zero it lies on the same edge of the v2 otherwise not.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

85

I can do this test for determine if a point is inside a triangle, I just have to reply to this test for three

times one for each edge, a point will be inside the triangle if and only if all three the test fails (dot

product result < 0), as shown in figure means that the projection come from the inside (in the

before figure means that the projection comes from behind).

We can use this approach to determine if a point have to be rasterized, we take the Bounding

Box of the triangle and we round it to integer division by two (it may be smaller than the original

triangle).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

86

Then for each vertex of the blocks we apply the half-plane test with the triangle edges.

If all the four sides of the square are inside that one will be a fragment of the triangle, if not that one

will not be a fragment for the triangle. This approach is highly parallelizable in hardware, and

also this isn’t a fixed rule this is implementation dependent. The issues are related with a

potential overhead due to many unnecessary test on fragments. The worst case possible is a long

and narrow triangle placed along the diagonal.

During the rasterization after the determination of the fragments composing the triangle, there will

occure the interpolatation of texture coordinates, normals, colors of the original vertices of the

triangle.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

87

Antialiasing
The rasterization introduces a problem called aliasing, when we sample a continuous line to

convert it into a set of fragments by approximating the original signal we have an issue called

aliasing. In our case the aliasing is given from an inclined line represented from jaggies (pixels

placed as a stair) during the transformation from continuous to discrete.

If you do some pixel painting on some imaging software and you draw a line and you see the

jagged representation this is a raster image. This is why we use vectorial graphics which uses a

mathematical representation of figures, so you can sample that mathematical representation

without having the jaggies, this because all the information is contained inside the representation.

The solution for this is antialiasing, this is another topic which is heavily investigated in the recent

years since consumers obviously prefer a smoother image. Higher resolution we use the harder

the jaggies are to see, but there is no way to remove completely them.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

88

On the right there is the antialiasing applied version of the left image, we can see that antialiasing

pick some less saturated pixel of the line placed in such a way (by sampling technique) that will

give us the perception that there is no drastically change of colors/frequency.

All these techniques are done on the GPU without our intervention, is a technique that card

manufacturers decided to use inside the GPU.

FSAA
Fullscreen Antialiasing, it is based on Super Sampling (or oversampling) methods and It is

conceptually the simplest.

It renders the scene at higher resolution and then filters neighboring samples to create an image.

if I have to render a FullHD frame we sample an image Nx times bigger and then we down sample,

where N is the sampling factor. Means that we will have to sample a 7680x4320 image for a FSAA

4x.

The algorithm is really simple, but the computational cost is extremely high.

MSAA
Multisampling Antialiasing is a more sophisticated technique, the idea was to sample multiple

times the fragments on the edge and then do an average of these sub-pixel’s samples.

This approach is faster the FSAA/SSAA. This approach is less easy to use with deferred

rendering or multiple render targets technique. Because, when we have to use the first pass of

the GPU Pipeline, in this case we have issues, this kind of techniques often use a random or a

selection of patterns to do the multisampling, I don’t always use the same positions of samples.

MFAA
The idea behind the Multi-Frame Sampled Anti-Aliasing is to achieve the same quality of the

4xMSAA with just two sample per fragment. This was proposed by NVIDIA with Maxwell GPU

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

89

architecture. It provides an alternation of spatial position of the sample and exploiting some

temporal passage of the sampled value they have achieved the same quality of 4xMSAA with less

computation (at the cost of 2xMSAA).

MLAA
The Morphological Antialiasing, born in the 2009. More than 10 years ago there is an

introduction of antialiasing technique done in the post-processing.

It can reach the MSAA quality of AA with a computational time of 5msec. It is based on image

processing and pattern recognition techniques like :

• edge detection

• analysis of patterns around edges

• edges “smoothing“ with color blending.

It is a computational efficient technique, it works only on information actually present in the

frame, and there is no need to generate many samples to average a single value.

The idea behind the MLAA is that i won’t apply AA as a black-box technique inside the GPU

Pipeline, but I will apply the AA as post process effect, on the Pixel Shader to smooth the result

of the previous Render.

SMAA
The Enhanced Subpixel morphological AA (SMAA) was released by Crytek, and it is a new

improved technique based on the same approach of MLAA. It is an extension and optimization of

MLAA, with more pattern recognition involved, and with the improved edge detection they also

introduced temporal and spatial multisampling. It is faster and more efficient then MLAA.

FXAA
The Fast Approximate Anti-Aliasing was released in 2009 by NVDIA. The idea was the same of

image processing and pattern recognition implemented with different level of complexity in

order to produce in post-processing an AA image.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

90

Intersection tests picking
They are very important techniques used in Computer Graphics and in lot of helpful situations like

ray-casting, culling, collision detection, relative distances between objects…

We need an intersection test when we want to know if two objects are intersected totally or

partially. But also provides useful information like knowing the intersection point or the distance

to the point of intersection.

Most of these techniques rely on some simple mathematical element, the Ray.

Ray
A ray is composed from :

• Point

• Direction vector

• Scalar t, for determining the points on the ray

Sphere
The sphere is element used a lot for doing the intersection, because it is a simple mathematical

element, we have two notations for the sphere.

Implicit notation

Explicit notation

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

91

Intersection tests, rules of thumb
As goal we want to achieve the maximum efficiency, we do this test to avoid more complicated

computation. This test is simple computation for avoid a harder one!

As usual to introduce some preliminary test we have to keep in mind that everything must be

optimized and accurately designed.

In case of lot tests, we first do the easy and quick tests and then the complex one. In this way I can

check the BVH to get a much more accurate sequence of operations.

To perform the intersection test in different orders i may decide to switch the order of the test I

apply or in some cases I raise the number of the test, but I reduce the dimension.

For example, three tests in 1D cost much less then a single test in 3D.

Ray/Sphere intersection : mathematical solution

The sphere the center which is c

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

92

In case of different delta’s result I will find myself in three different situations.

Ray/Sphere intersection : geometrical solution

The vector l is a vector that represents the distance from the origin of the ray to the center of the

sphere. The vector d is the direction of the ray.

If the squared vector l is less then squared radius r, this means that the ray/vector l has the origin

inside the sphere. This means that there will always be an intersection in this case, and if I need to

know if they intersect, I can just stop at this computation.

In the case where the squared vector l is greater than the squared radius r, this means that the

origin of the ray isn’t inside the sphere, but we still don’t know if there is an intersection. To know

that we have to calculate the projection of the vector l on the direction vector of the ray d, we call

that s.

• 𝒔 < 𝟎, means that the sphere center is behind the ray origin, no intersection.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

93

• 𝒔 > 𝟎, we can have two possibilities in base of the value of m which its length is obtained

by the formula 𝒎𝟐 = 𝒍𝟐 − 𝒔𝟐

o 𝒎 > 𝒓𝟐, means that there is no intersection, the ray is out the sphere.

o 𝒎 ≤ 𝒓𝟐, they intersect (and I can stop there if I just need to know this). Now we

have to find q, to do that we solve the equation 𝒒𝟐 = 𝒓𝟐 − 𝒎𝟐, the solution of the

ray intersecting the sphere are expressed from be 𝒕 = 𝒔 ± 𝒒

Between the mathematical and geometrical solution, it’s better to choose the geometrical, this

because the test starts earlier. In the mathematical case I have to setup lot of operations before do

the intersection test.

Ray-Box intersection (OBB and AABB)
I want to know if a Bounding Box of any object is intersected from a Ray, I can do this before the

Ray-Object intersection, which is a more complex.

With very few computations I can determine if a box is crossing the BB. This approach is

applicable to the slaps of the k-dop.

Imagine that we are looking to the box from the top, let’s switch the test between ray and planes

(which are the faces of the BB). Let’s also consider the slabs of this planes.

Now let’s consider two rays, the one on the right isn’t intersecting the BB and the one on the left

yes. Now let’s consider the Ray-Slabs Planes intersection, this is really easy to do, I just have to

put the equation of the ray in the equation of the plane (no solution if they are parallel).

The intersection points for the two possible slabs are 𝒕𝒗 for the red slab and 𝒕𝒖 for the green slab,

they both have a minimum and maximum value for the intersection of the slab.

Now we search for the maximum 𝒕𝒎𝒊𝒏 and the minimum 𝒕𝒎𝒂𝒙 , after we found these two values

we check if 𝒕𝒎𝒊𝒏 ≤ 𝒕𝒎𝒂𝒙 , in that case we have an intersection.

This intersection test is also appliable to the k-dop BB.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

94

Ray-Polygon intersection
We don’t have polygons with more than three-sides in Real Time Graphics, but for the sake of

explaining you what it can be done we may have to consider an intersection between a ray and a

generic polygon.

I’m showing you this case because is one of the cases where you can reduce the problem by

reducing the dimensions.

First of all, we consider the infinite plane of the polygon, if the plane exists we then check if the

ray is parallel to the plane, this means that there is no intersection.

We can then reduce the problem from 3D to 2D, by projecting everything (polygon + ray) on one

plane of the world (XY, XZ or YZ).

Now we want to know where the polygon area is greater. The polygon could be a face of an object,

which could be oriented in a certain way, if we want to project this polygon-face on a plane and we

want to check where the area is greater, we have then to discard the biggest normal component

(which contains the orientation of the object).

After that I can check if a point is inside the polygon by using the Crossing Test (2D test).

Crossing test

A point is inside a polygon if a ray from the point in an arbitrary direction crosses an odd number of

edges. This approach is good for generic polygons which are rarely used in RTGP.

In our case the most common case of Ray-Polygon intersection happens with triangles, and there

are more efficient techniques proposed for this case (e.g., half-plane test).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

95

Plane-Box intersection (OBB and AABB)
Plane equation:

Each vertex 𝒗𝒊 of the BB is inserted in plane equation :

If the vertices of an edge got all the same sign (sign of the half-plane), this means that there is no

intersection between the plane and the box.

Plane-Box intersection AABB alternative

We compute the e, which is the extent of AABB projected on the plane normal.

𝑒 = |ℎ𝑥|𝑛𝑥 + |ℎ𝑦|ℎ𝑦 + |ℎ𝑧|ℎ𝑧

Then we consider the s, which is the signed distance from the center of the AABB to the plane.

𝑠 = 𝑐 ∙ 𝑛 + 𝑑

If 𝒔 − 𝒆 > 𝟎, the AABB totally in negative half-space.

If 𝒔 + 𝒆 < 𝟎 AA totally in positive half space.

If −𝒆 ≤ 𝒔 ≤ +𝒆, the AABB intersects the plane.

Plane-sphere intersection
Plane equation:

We got a sphere of center 𝒄 and radius 𝒓. You calculate the equation of the plane by using 𝒄 as x.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

96

|𝒇(𝒄)| > 𝒓, there is no intersection.

|𝒇(𝒄)| = 𝒓, the sphere touches the plane on a single point.

|𝒇(𝒄)| < 𝒓, the plane intersects the sphere.

Sphere-sphere intersection
You simply take the center, and you compute the distance it is trivial.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

97

AABB-AABB intersection
The AABB faces are aligned with the world axes. We may want to consider if two AABB are

intersecting, in this is case having three 1D test is better then have one 3D test.

Because the 1D are really fast. I take the AABB and i consider the projection in all the directions. If

there is an overlapping in all the three projections, there is an intersection between the AABB.

Sphere-AABB intersection
Even in this case we reduce to three 1D tests, where we check for each axis if the center of the

sphere is between the min and max AABB values. If the center is inside then there is an

intersection, otherwise we compute the distance between center and AABB.

After these three tests, we compare the sum of squared distances compared to squared radius. If

the sum is less than the squared radius, there is an intersection ***

Separating Axis Theorem (SAT)
The two convex polyhedral are disjoint if at least I can find one of these axes separating the object

:

• an axis orthogonal to the face of the first polyhedral.

• an axis orthogonal to face of the second polyhedral.

• an axis generated by the cross product between an edge of the first and an edge of the

second.

In this case i can find an axis orthogonal to the first box which separe the two objects.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

98

SAT is used for some intersection tests :

• Triangle/Triangle

• Triangle/Box

• OBB/OBB

Triangle-Triangle intersection
This is an alternative of the SAT specific for two triangles.

Given two triangles, we can test the intersection between the two infinites plain defined by them.

So, we perform the first two tests :

• Test if the first triangle intersects the plane of the second triangle.

• Test if the second triangle intersects the plane of the first.

If both the tests fail, this means that there is no intersection between the planes (or that the

triangles are on the same plane or on different but parallel planes).

In case of intersection there will be a resulting line L, now let’s consider how this line crosses the

two triangles. If these two segments are disjointed the two triangles are not intersecting, vice versa

if they are jointed together.

View Frustum intersection
Frustum Culling is mainly based that I want to know if an object is inside, outside or

intersecting the View Frustum (for the culling). We reduce this situation to a test between the BV

and the six planes of the frustum.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

99

View frustum testing
I can exploit the BVH and apply the tests on the BV.

• If the test says that a BV is completely inside or outside from the frustum, i can stop here.

• If the BVH intersects the frustum there could be applied other tests to lower level of BVH or

it could get classified as “probably inside” (this for avoid).

In the case of Bounding Sphere, so Sphere-Frustum intersection.

We consider the positive half-space outside the frustum; I consider the signed distances from the

sphere center to the six planes (six Sphere-Plane tests).

• If all the distances are greater than the sphere radius, this means that the sphere is totally

outside the frustum (no intersection).

• If all the distances are smaller than the opposite of the sphere radius (-sphere radius), then

the sphere will be all inside the View Frustum (no intersection).

• In all the other cases the sphere intersects the View Frustum.

Dynamic intersection tests
There are intersection tests which are dynamic, where the object is moving, and you want to

consider different time of interval the situations. These tests are applied at discrete times, they are

need for dynamic tests for moving objects.

For this kind of tests usually the spheres are considered as BV.

Dynamic intersection tests : Sphere-Plane

We have a moving object, and at certain frame the object is at certain position over the plane, at

the following frame you again check the position of the sphere.

If the center of the sphere in the previous and current frame is on the same side of the plane, then

there is no collision.

The same if the distance from the center of the sphere in the first frame is greater than the same

distance but at the time of when the sphere touches the plane (vice versa for the distance in the

second frame, it will be less than the distance when it touches the plane).

The time of intersection is computed by using the position of the center of the first and current

frame, with this time i can decide what to do.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

100

A simple response would be a reflection of 𝒗 around the plane normal, or the sphere moved by

(1 − 𝑡)𝑟.

Dynamic intersection tests : Sphere-Sphere
I can manage this situation by reducing the complexity of the problem, let’s imagine I have two

spheres the green (called A) and the blue one (which is B).

We have a starting situation which is dynamic, there is a directional movement, the aim is to know

if they are touching. We can reduce the problem to make it equivalent to a Ray-Sphere

intersection.

Starting from the original situation, and applying the principle of relative motion, I will get to an

equivalent state if i compute a subtraction between the velocity vectors of the sphere 𝒗𝑨 − 𝒗𝑩.

In this new situation (second image) the blue sphere (B) is now static, and the green sphere (A) is

now moving using the new velocity vector 𝒗𝑨𝑩.

Now if I change the blue sphere (B) by adding to it’s radius the radius of the green sphere (A), we

get a new bigger sphere which is the composite of both B and A. In this way now we can consider

A as a single point. We can now apply the Ray-Sphere intersection.

We will use the 𝒗𝑨𝑩, and the 𝒍 vector which represents the distance between the two centers.

Then I put everything in the equation of the sphere and reduce everything to a second order

equation.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

101

I compute the solutions and I take the smallest of the two solutions as the time of the first

intersection.

Then i use this time t inside the ray equation, of two rays that starts from the center of the spheres

and passing the time of the first intersection as parameter inside it.

In this way i can statically know the point of intersection in a dynamic situation.

Picking
When in an application I move a selected object thought the mouse click and drag operation (or

any other input device).

Actually, when we perform the click we are clicking on a window (final result of the Graphics

Pipeline) not on the selected object itself. We are clicking just a colored pixel at the moment, so we

got to get backward to the stage of before the color calculated.

The solution to this problem consists in shoot a ray in the direction of the pixel we have clicked with

the mouse, and then we convert everything back (from 2D coordinates) to 3D mesh coordinates.

This is an inverse projection from window coordinates to object coordinates.

BVH is exploited to determine the selected object, usually there is no need to perform Ray-Triangle

triangle intersection.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

102

Then I will invert the Window Coordinate System to the View frustum Coordinates System, to

do that I compute the inverse matrix for the projection. By using that I will find a point on the near

plane which I can use to determine a vector from the center of the projection to that point.

Other techniques 1
Picking is something that we may use in interaction application, not only one method to doing there

is also another method “color coding” is an example, is less recent, you could think to assign

some particular flat color not used in the scene. By using this auxiliary color for a single mesh

(unique color for each mesh), when we click for picking you check on this buffer the level of the

color under that position.

Very easy to use but you use a dedicated rendering buffer rendering cycle to map this color to

pixels.

Other techniques 2

Another technique consists in rendering of the scene using a small window centered on the picking

point. Then we got a list of objects intersecting the picking window with the corresponding depth

information, anyway even this needs a dedicated rendering cycle.

It is possible the multiple selection of lines and vertices, performed in the Application Stage.

shader-based techniques
These are the most recent techniques; they are based on potentialities of geometry shaders. The

identification of triangles is processed by shaders.

This will exploit the GPU speed for a more accurate picking and more complex selections, by the

way this will involve all the Graphics Pipeline. It is used for performance and code optimization.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

103

Collision detection (Collision Handling)
A fundamental step in most graphic applications 2D/3D we got a lot of collisions, because we have

objects we move around, and we don’t want to see intersections going on. It’s a very important part

of the rendering Pipeline.

Actually, we use Collision Detection as term for identify this topic, but the correct term is

Collision Handling, where the collision detection is just a part of the overall process.

The Collision Handling is composed from :

• Collision Detection, this will test if two objects are intersecting.

• Collision Determination, this will determine points of intersection.

• Collision Response, this will determine what actions should be taken in response to

collision.

Collision Detection
Even in case of densely populated scene we need to make them work as fast as possible, by

managing the polygon soup (mesh made from different meshes) , the rigid body motion (roto-

translations), the BVs (exploiting the BVH), Collision Map, Collision Solids….

There is the “Brute force” approach, a formula that gives you the number of the performed tests at

each frame by considering 𝒏 moving objects and 𝒎 static objects.

This is expansive if n and m values grows, there is need for more efficient methods (could perform

good if there aren’t lot of objects). The Collision Detection is done in the Application Stage

(mainly in the CPU), its results are managed in some way and maybe some of them are sent to the

GPU (e.g., roto translations after collision with an object).

Simple cases
We have to consider the situation you are not forced to choose the more sophisticated but perfect

technique if your scene has some simple features which allows you to choose for simple solutions,

all the complexity regarding Collision Handling has a sense if the scene is complex (lot of objects

and movements).

There are some cases when there aren’t needed complex collision systems (e.g., Pong). In some

games you just use a Ray-based intersection test.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

104

For example, if you have a car which must always stay on a terrain, you simply take the wheels

you check four rays going down and you check the intersection with the terrain. The distance

between the wheel and the terrain, you will always try to keep the wheel tangent to the mesh in

that point.

Another example, I have a first-person camera and I want to move inside a building with rooms,

window and walls. I want to avoid passing through walls. I can shoot a ray in forward direction,

and I find the intersection point then I check the distance with the position of the camera (a vector),

if the distance enters a certain tolerance value I stop the camera movement (we can give a sense

collision).

In the case of a maze with flat terrains, I can switch from 3D to 2D, I can limit the test on the XZ

plane and discard the Y (considering that I don’t have to jump, a regular maze).

These techniques are easy and fast but not really accurate, especially for complex scenes.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

105

Collision Detection for complex scenes
In this case I need these stages

Broad phase

I can identify pair of objects which are close enough in that frame, which may be better to check if

they are colliding or not. But in a very large scene two really distant objects are probably not going

to collide, so is better avoid this computation (the test of BVHs of each couple is not efficient

𝑶(𝒏𝟐)), this is what the broad phase is made for.

This phase is based on temporal and spatial coherence of objects :

• Changes of position and orientation are small from frame to frame.

• I determine sub-set of objects close enough to potentially collide.

• Discard too distant objects.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

106

It first identifies the potential colliders, and only for them I’m going to apply the intersection test (I

send them to the mid phase). The others which are not potential colliders will not be checked one

against each other (e.g., two really distant object).

Broad phase : Sweep-and-prune

The sweep-and-prune algorithm is one of more efficient technique for the broad phase. You take

an AABB which may contain the object in any possible orientation. I consider all the possible

orientation of the object and I take the maximum extent that the object can have (very large BB).

I use it because if I take two of this very large AABB, if they intersect then their projection must

intersect on all the three axes, so I reduce from one 3D test to three 1D tests.

• Ordered list of the intervals, where the intervals are the projection of the AABB on the axis

(so i get three ordered lists).

• Search for interval overlapping.

• If intervals overlap on all three axes, then I have to send the couple to more complex tests

in mid phase. If they are not overlapping i assume that in the next frame they are not

colliding (too distant).

• Sorting of intervals list for the next frame.

This list has to be managed and ordered continually.

The 𝒊𝟑, 𝒊𝟒, 𝒊𝟐 are overlapping on the same interval, in the following frame the object 𝒊𝟐 has

moved on the right and there is no more overlapping between the axes.

The complexity of this algorithm is 𝑶(𝒏 𝒍𝒐𝒈𝒏 + 𝒌) the list sorting can be reduced, because for

temporal coherence I can use bubble sort or insertion sort which are 𝑶(𝒏). The 𝑶(𝒏) is the list

sweeping and 𝑶(𝒏) is the report of k overlapping intervals.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

107

Broad phase : Grids

Division of the scene in cells, I keep the content of each cell and I send to the middle phase only

the BVs of the objects inside the same cell.

This technique has some issues :

• The choice of cell dimension, I can use the greater AABB to determine the dimension of

the grid.

• Efficient memory management, larger is the scene emptier the scene will be.

Mid-phase

It is mainly based on the intersection tests. In this phase I check BVs against other BVs (simplified

test), if the two BV intersects there is a collision, i then have two options :

• I can directly apply the Collision Response.

• In the case i need to find and accurate collision point at mesh level i will go to the Narrow-

phase Collision Detection.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

108

Narrow-phase (optional)

In this phase i go at primitive level to know the point of intersection on the actual mesh (for

whatever reason is needed, maybe a headshot).

This also could be used for querying the distances between triangles in order to use that for

maintaining a relative distance between two models.

This phase often exploits a BVH at primitive level, this in order to avoid as much as possible

Triangle-Triangle intersection tests.

BVH at mesh level

It is a BVH for Collision Detection applied to the mesh of a single model, this is organized to cover

subsets of primitives (triangles), and it is done mainly to avoid Triangle-Triangle tests as long as

possible.

For the construction of this BVH I have two approaches :

• Bottom-up I start from the primitives and then I analyze the mesh and I create subsets of

triangle and I create the BV on that, then I keep going up creating the tree from the leaves.

• Top-down, I create the whole BV of the model and then doing divide-et-imperia I split the

mesh and I create the hierarchy from the root to the leaves.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

109

BVH, Collision Solids, Collision Map, …

In some game engine could exist a distinction between BVH for culling and BVH for collision

detection. We discussed as having the BVH of the scene, that may go at lower level that consider

also the mesh, but in some engines there are two separated BVH.

• BVH for the Visibility Culling.

• BVH for the collision, this because a game engine is composed by different modules each

one doing a specific part in sophisticated game engine you may have a specific module for

collision handling based on some physics simulation often they rely on some other library or

framework.

This due to the fact that a Game Engine is modularized, and there could be a specific module for

the handling of collision (maybe based on a Physic Engine) and for that you will use a different

BVH.

For Physic Engine/Collision Detection system you have different name for BVs like Object

Proxies, Collision Solids/Shapes, Collision Map, … In the end these names are defining some

BV/Collision Volume associated with the mesh.

Not only the name changes in this BVH, but there are also new different shapes that are used like

capsule, cone, cylinder. This BVs are not rendered (like the BVH for culling), they are used for

Physics Simulation and Collision Handling.

Some of these Collision Volumes could not be related to objects of the scene, they are used for

other purposes. e.g., the sphere associate to an FPS camera, or some volumes are used to trigger

events (when you pass an invisible plane it will close the door).

Collision Detection : Cost function

Number of the complexity of your scene.

𝑛𝑣 , number of BV-BV tests.

𝑐𝑣 , cost of BV-BV test.

𝑛𝑝, number of Triangle-Triangle tests.

𝑐𝑝, cost of Triangle-Triangle test.

𝑛𝑢 , number of BVs updated due to model’s motion.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

110

𝑐𝑢, cost for updating BV.

Collision Response

In these phases we choice the action in response to a collision, this is decided by the developer,

could be a simple response like a displacement or calculated by a physics simulation model (this is

used in the most realistic games, which uses a specific module Physics Engine usually defined in

Application Stage).

Physics simulation
You want that Collision Handling is automatically settled up being based on already defined

module (Physics Engine).

A good Physics Engine must be able to :

• Consider different physics phenomena and conditions.

• Must be efficient (is a process that runs before the rendering, it will be the transformation

matrices that will be send to the shaders), this is another thread to execute. We are still

aiming for real-time performance.

• Has to be accurate (truncation error must be low), this means based on numerical

method.

Usually when physics engine can manage object with different mass :

• Point mass, where only 3DOF, this means that the object will be able to have just the

linear motion.

• Rigid Body, the object doesn’t have a deformation after collision, we have 6DOF, so the

object will move and rotate.

• Soft Body, the objects is deformable (cloth, liquids, etc.…). Will be more computationally

expansive.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

111

In Physics Simulation, all the simulation will be applied only to the collision solids. When you see

an object in the game reacting to a force, actually the physics engine doesn’t care about that mesh.

It doesn’t consider the mesh at all; the physics simulation is applied to the BV of the Physic Engine

for representing the Mesh.

At each simulation step you have to perform these operations (the first two could be constant and

set up one single time) :

• Setup parameter of the objects like mass, …

• Setting up the parameters of forces : gravity, friction, …

• Calculation of acceleration

• Calculation of velocity

• Calculation of position

Accuracy
The accuracy of the Physics simulation is affected by the adoption of different ODE (Ordinary

Differential Equation) solving methods.

You have to compromise between the time step and ODE solving method complexity.

Some well-known methods :

• Euler-Cromer

• Euler-Richardson

• Range-Kutta

• Verlet

For example, let’s stay on the Newton Second Law with Euler method for solving.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

112

You have initial acceleration, which you can get to the velocity and the to the position. This method

is correct on paper, but when it is being applied computationally you lose accuracy of the method,

this because the formula is applied at each step without keep track of the previous step.

On Paper :

Computationally :

A more accurate simulation is the Verlet integration, it is the most used in real-time graphics, this

method keeps the position of the previous time step. And you do a Taylor expansion of the

previous and current position (the odd derivatives disappear from the equation).

In this case you don’t need the velocity because it isn’t explicitly used. You just need the position

and acceleration (determined by the forces)

This method could be reverse with a negative timestamp, and it is also good for the numerical

stability which it gives.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

113

Forces in Physic simulation

Gravity
The most common phenomena used is gravity, at least I have this force applied to the objects (I

can use the same formula but different acceleration if I’m on a fantasy planet).

Friction
Another very common force is friction, the forces exported by each surface on the other, in this

case is called dry friction.

Usually, dry friction is simulated with coulomb friction, this friction is a force which is parallel to the

surface in the opposite direction (if I push an object on the ground the force goes in the opposite

direction).

I can have also drag, which is simplified fluid resistance (e.g., a car running on the street, I can

simulate the resistance of air).

As you can see they are based on a single parameter that express how strong the force is being

applied and another which contains the direction (so must be a vector).

Linear momentum
More comprehensive simulation of the forces, in particular with roto translation we need also to

introduce and simulate the different physics parameters like linear momentum. Multiplication

between mass and the velocity

Impulse
The impulse is a change in the linear momentum in the same direction of the movement, so I take

the linear momentum and I change it. The impulse is the result of a strong force applied in a very

short time, which usually change an object change very rapidly the speed and direction.

(Change in linear momentum in the same direction)

Angular momentum
When we introduce the rotation, we have also to consider the angular momentum which is defined

with the I, a parameter that describes the resistance that a body applies to change its angular

speed (Inertia). The moment of inertia is how strong the resistance of this object to this movement.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

114

The other parameter is w, which is the angular speed (during the rotation movement).

Torque
The torque (momento meccanico or moment of a force), it is like a twist applied to the object to

make it rotate it about an axis.

Constraints
The idea is that the computations performed to simulate a physically accurate reaction to forces is

something which is not so easy from the computational point of view. In real-time application we

need to really optimize the speed-up process by approximating it a bit.

The physics engine to run may take longer time expected in real-time application, this because

having 6DOF in Rigid Body simulation is a complex situation to manage. But there are some

situations where we still want rigid body physics simulation, in certain simulation we may identify

some movements some degrees of freedom which are not required.

e.g., If I introduce a constraint in the physics simulation, ion way to limit the DOF from 6 to 3, then

the simulation will be performed in a faster computation time.

Some constraints from robotics :

Point2point : There is free rotation on the three axes but is not possible to translate. It is used for

anthropomorphic model where I want to simulate the falling of human and I want to simulate the

rotation of the hands/joints during the movement, the arms must not translate (staying connected

to the overall object) but free to rotate around.

Hinge : The rotation is allowed only on a single axis and there is no translation, for example a

door.

Slider : The rotation is not allowed and the translation has a limited movement.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

115

Cone : This is a special case of the point2point constraint, in this particular case the rotation is

limited to a cone shape. This is usually used in the ragdoll animation.

With these constraints i can speed-up the Physics simulation, because it limits the possible

transformations to a subset on some specific axis or direction.

When we have to solve the system in the Physics Engine, if we apply the constraints then the first

things that system resolver does is to check the constraints and try to satisfy them.

If we have introduced more than one constraint then there is a policy we have to choose between

two :

1. The satisfaction of one may not satisfy another.

2. The satisfaction of all constraints at the same time is not efficient.

Usually are applied relaxation methods, which will try to satisfy one at time in a sequential way, this

in order to reach the final solution.

Example-1 Collision of 2 objects
I have two object colliding; we usually have two periods : one period of deformation and on

period of restitution.

During the collision each object apply a force on the other, we have a very short collision time and

a relevant change in velocity (in a very short amount of time, this will also change the direction).

For the first object we can integrate the collision force on collision time :

For the second object and for the Newton’s third law we have :

During collision each object applies a force on the other which is an impulse (the c scalar is a value

for the impulse):

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

116

Then we have also the so-called coefficient of restitution, which is a measure of the collision

elasticity. This parameter is between 0 and 1 which tells how elastic is the collision which I’m

simulating, this is an approximation of real-world materials characteristics.

• Coefficient of restitution = 1, means that we have a perfectly elastic collision.

• Coefficient of restitution = 0, means that we have a maximum loss of kinetic energy.

We can arrange at this point everything in this equation, and we can define the coefficient of

restitution has :

There is another possibility for getting the coefficient of restitution, but this applies in the specific

case of an object bouncing on a fixed surface, like a ball falling on the ground. In that case the

coefficient of restitution is given by the square root between ratio of bounce height and drop

height.

At this point I can define the linear impulse has :

I can use the same initial equations (m1 and m2) to compute the velocity after the collision.

Example-2 Ragdoll Physics
The physics is applied to a hierarchy of collision shapes which are associated to model bones, joints, ,… for

simulate a realistic falling (the accurate constraints used in this case are the cone joints constraints).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

117

How much realism is needed?
The developers decide the level of realism in base of the goal of the application. If I’m making a car

simulating game i will really need an accurate Physics simulation. Since we are in real-time

graphics we need to optimize everything, in case of an accurate simulation game we will need a

sophisticated ODE (Ordinary Differential Equation) solver.

In case of more simple game, like an arcade, I don’t really need an accurate Physics simulation, so

i relax the overall complexity of the computation by using a greater approximation.

Some very complex phenomena can be approximated by using simple techniques

Example-3 Spring-mass-damper systems
You have a mass, and you apply to them both a spring and a resistance, if you consider a mesh

and every vertex is a mash and the edge is a spring, then we can simulate some phenomena on a

mesh like cloth simulation or flexible body (resistance force + elastic force).

Like in the figures this is something which propagates along all the mesh, these two forces applies

movement to the attached vertex and so on… This is obviously not realistic in real-world, however

this is very easy to implement, and we got a way to express a complex phenomenon in the end

(even if not realistic).

The problem is that is something not so easy to control, we have really to find tuning of the two

forces and so we are not really apply something which has a link with real physics, this is obtained

empirically. So, we tune parameters since we got an impression that this is similar to the real one

phenomenon.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

118

The two forces are defined in this way, we have the sum of the two where the spring force is a

classical Hooke’s law, so we have an elastic coefficient −𝒌𝒔 which is multiplied for the

displacement of the spring in rest position �⃗⃗� .

The resistance is the Stoke’s law so a simplified friction force, obtained by the multiplication of the

opposite friction coefficient µ𝒅 with the velocity of the spring movement 𝒗𝒅⃗⃗ ⃗⃗ . By tuning the

elastic coefficient and the friction coefficient i can have different effects.

If i have two balls attached with a spring-mass-damper, i apply one force to the one in the left and

i make the spring from the rest position 𝒍 to something larger. I can compute the force applied to

the first ball which is the sum of Hooke’s law and Stokes’s law, and if the spheres have the same

mass i already have the force which is applied to the other ball but in the opposite direction.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

119

This kind of simple phenomena is also used for “control” forces :

• I set a rest position of the spring to 0 and a very high elastic coefficient and low

friction, then the this will keep 2 objects attached.

• If I set the spring with rest position greater than 0 I main a minimum distance between

two moving objects.

Example-4 Vehicle
A realistic car simulator is extremely complex, a more approximated approach is obtained by

applying and combining forces and methods described previously to achieve an effective but less

computational expensive simulation.

Taking for example this car from Bullet library, I set up gravity, mass, center of mass of the

vehicle.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

120

Then I setup a set of simple forces : friction on the wheels (from the ground), torque to the wheels

for acceleration and braking. Then the front wheels got attributes : turning radius and friction.

Then I have the suspensions, I can apply a spring-mass-damper system and I can set up the

following parameters :

• Stiffness

• Compression

• Damping

• Max suspension travel

• Max suspension force

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

121

If the front-wheels are independent I can apply constraints in a way to avoid asymmetric forces,

and I can apply ray casting to keep the vehicle on the ground.

For an arcade vehicle all these parameters are considered in order to simulate physics of a car.

Light sources in Computer Graphics
A light source in the scene is not visible, the model of an object that contains the light is part of

the scene, but the light itself no, the light is more “virtual” in respect of the object. Lights in games

are made without shapes and there are different types of lights.

Directional
Kind of light you receive from the sun (uniform illumination same intensity of light in every point),

this light is so distance from the scene that all the light rays hit parallel the scene. In this case you

define light using a vector, it is particularly good for simulating the solar rays.

Point light
The one you use close your scene are the point lights, it is a point that emits light. There is no

dimension, you define it by using a point. You can apply it a decay rate, means that the power of

the light decays more as you move away from the light source.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

122

Spotlight
It is a special case of the point light; it isn’t a complete point but just a cone-shaped portion of it. Is

possible to setup a cut-off angle, in this way it is possible to have two concentric cones in the

view, where the more external is the less intensive.

Area light
Is a light with a specific shape and size, it is usually approximated using a set of point lights

distributed over the surface. The effect of all the point lights makes this final simulation. It is just a

bunch of point lights.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

123

Inverse-square law
In the real world the light decays as more I get away from the sources, so it is up to developer

implement this. The intensity of the light is inversely proportional to the square of the

distance from the light source.

Materials
The light which has some physics properties, touches an object and the property of the light

interacts with the properties of the material in such a way that our brain changes the perception of

that light.

There are three possible interactions between light-material :

• Reflection

• Absorption

• Transmission

For the law of conservation of energy, the incident light is equal to the sum of the reflected light,

absorbed light and transmitted light.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

124

In more complex approximation I can forget about the law of conservation of energy, anyway this is

a good law to follow for respect Physics Simulation.

BRDF, BTDF, BSDF
Bidirectional Reflectance Distribution Function is a function which describes how light is is

reflected from the material. For example, a material got a BRDF parameter that describes how the

material itself interacts with the light, then the function tells that the light coming from a certain

angle (incident light beam) of incidence to the material will be reflected (reflected scatter

distribution) in a certain way.

In the case you want to describe the refraction (transmission), you will have to use Bidirectional

Transmittance Distribution Function is a function which does the same of BRDF but for the light

which goes inside the material, and it is scattered in particular way.

The idea was to use the BRDF and BTDF separately, but with increase of the computational

powers and the starting to refraction techniques, they wanted to use a term for indicate both the

phenomena together. This is the Bidirectional Scattering Distribution Function.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

125

BSSRDF
Bidirectional Surface Scattering Reflectance Distribution Function, it is introduced for the light

which is scattered inside the material can exit from the surface not in the same incident position.

The light is bounced inside the material (diffraction).

Physically based BRDF
Where “physically based” means that it si more physically correct respect at the standard way.

The assumption usually is that the material can be described at microscopic level as composed as

microfacets.

For example, if I use a microscope and I look to the surface of the material I can see microscopic

facets (they are visible only at microscopic level or smaller) oriented in a different way, like very

small mirrors, and the final reflection of the light is given how random or ordered is the orientation

of this very small microfacets.

This set of small facets, there is a high number of this i cannot simulate them geometrically I can

simulate them statistically. I assume that I can use statistical distribution that describes describes

the overall orientation of the facets completely random or oriented in a certain direction, and I use

statistical distribution to simulate the characteristic of the material.

Rougher the orientation of the faced is more scattered the light is in several direction.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

126

Different level of microfacets on a material

BRDF
The BRDF defines how an incident light from an incoming direction is being reflected along an

outgoing direction.

It is possible that the material is reflecting in just one direction (specular material), the BRDF can

say that for a portion of 90% of the reflection the result is 0 and in the remaining portion the

reflection is 100%.

The BRDF is like giving you a map of all the possible direction, the original description of the BRDF

is the function of :

• Wavelength

• Position of the surface

• Directions for the incoming and outgoing direction.

We have the formula with two parametric values that describe a ratio between two photometric

physics measures radiance and irradiance, mainly it is the ratio between the incoming and

outgoing light, 𝑳𝟎 and 𝑬.

BRDF is isotropic if the formula is valid for all the orientation, if the orientation around the

plane it’s uniform regarding that direction.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

127

Anisotropic BRDF
The BRDF is anisotropic if the behavior of the reflection is not uniform in all the direction, but it

changes when the surfaces is rotated along then normal (the sphere on the right).

As you can see we have a certain area where the sphere is brighter while the other two area they

are dark. So, the anisotropic BRDF means that isn’t uniform in all orientations.

Where do I found the BRDF for materials ?
for different material aren’t known for all possible material, they are usually defined analytically so

they are approximated. Then I can use the parameters and different parameters lead to an

approximation of the final result of the material.

This approximation can be based on some physics criteria, or they are mainly based on an

empirical model.

The BRDF can be measured with the gonio reflectometer, a device specifically made for

measuring the BRDF.

The device consists of a light source illuminating the material to be measured and a sensor that

captures light reflected from the material. The light source should be able to illuminate and the

sensor should be able to capture data from a hemisphere around the target. The hemispherical

rotation dimensions of the sensor and light source are four dimensions of the BRDF.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

128

You have very large set of data of all the possible lights and direction (where gonio came from),

object observation and object rotation. With all this data you can reconstruct a numerical method

which gives you the BRDF.

Rendering equation
This process it is based on the rendering equation proposed by Kaija in 1987.

This equation describes generally light-material interaction for every point in the scene and for

every incident light direction.

This is based on the law of concentration of energy, for every position and direction of the scene,

the outgoing light will be equal to the sum of emitted light (light on the same surfaces of the

object, most object doesn’t have it) with reflected light. This is considered by the recursive

formula for multiple reflections and refractions. In real-time graphics you don’t use the recursion

implementation of this formula, in path-tracing yes.

The integral is considered over the interval of the hemisphere of the incidence point x, of the

BRDF multiplied by the incoming light multiplied by the cosine of the incoming direction and the

normal. The integral considers all the possible reflection and refraction of light,

This isn’t obviously an appliable equation in practice, but it gives a nice explanation of the big

picture.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

129

Illumination models
In computer graphics we use illumination models which are mathematical models which

approximate the results of this equation.

The amount of the computation is given by the complexity I want to use in my application and also

the nature of the computer graphics in my application. In sense that, if the application is rendering

for a movie i can use an illumination model which is an approximation but is something that will run

for hours, so it must be really specific.

The illumination models can be divided in :

Local illumination models, this are used in real-time graphics, we computer only the direct

illumination, we consider each point separately and you usually apply an illumination model which

is a function of a certain limited set of vectors. These vectors are mainly the position, normals

,direction from the point to the light source (L), direction from the point to the camera (v), the

reflection vector.

Global illumination models, this are used for the movies, where are considered both direct

(illuminated the object directly) and indirect (lights reflected from other objects which contributes to

the illumination of the objects) illumination.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

130

BRDF Simplification
Mainly what we do is a more relevant approximation of the BRDF. The BRDF for standard real-

time graphics is a simplified version of the original BRDF model where I don’t consider the whole

spectrum of light but only the RGB, and I consider the material as uniform (BRDF is the same on

all the points of the object) in all surface point, and usually I consider the material isotropic.

So, I reduce the BRDF to just two parameters: incident light and outgoing light.

Empirical BRDF
This are used when the computational power wasn’t so high as nowdays. Some of these models

are current still used in computer graphics for simple objects, the requirements for these models

(even if they are empirical) are :

• conservation energy

• separation between diffusive and specular components

• intuitive parameters

Simplified models of light reflection

Diffusive
Diffusive is when the light is reflected in a uniform way in all the direction, you consider the

hemisphere and you reflect the light in all possible direction. The only parameter which rules the

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

131

amount of the reflection is the angle of incident light, the more is perpendicular the higher is the

reflection (vice versa more is tangent to the surface). It isn’t dependent from the viewpoint.

Specular
The light is reflected in only a single direction, in this case the view position is relevant. We aren’t

talking about a reflection of a mirror but of a material like metal or glass.

Glossy
We have a main direction which is a specular direction, but then the light is reflect as a lobe. The

larger is the lobe of reflection more blurred is the specular reflection.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

132

Lambert’s cosine law
For the diffusive reflection the only parameter is the angle of the incident light, then we define

this using the cosine law. The light

The first illumination model is the lambert’s illumination model which is a model just for diffusive

material (no plastic, no metal but more like wood material). There are two version of this model,

one for trigonometry and one with vectors.

Digitare l'equazione qui.

𝑳𝒊 represents the incoming light from direction 𝒍, 𝒌𝒅 is the diffusive reflection coefficient.

This is for one light only, if we have more lights we have to do a sum and consider all the

directions.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

133

Even if it is really empirical if we want to link the BRDF to the microfacets approach (PBR

approach), at microscopic level this material uniform reflection is a very rough surface.

Because the light is reflected in every possible direction this means that all the microfacets are all

oriented in all different way.

Phong reflection model 1975
Phong introduced the Phong reflection model, an empirical model used for considering also the

specular material like plastics, metals, … it is not the most used (that is the Blinn-Phong). It has

become a standard for many years because it was easy and possible to compute them on the

graphics hardware that was available.

The reflection on a surface is obtained by the sum of three components :

• A diffusive one using the lambert model.

• A specular one for the “highlight” part of shiny materials.

• An ambient component, which approximate the global scattering of the light in the scene.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

134

Ambient component

The idea of Phong for ambient component is to introduce a small constant to simulate some kind of

indirect light approximation, the problem with that is given by the fact if you leverage too much

this value you get a wrong flattened effect. This is a very rough approximation of indirect light.

Specular component

Just for the “highlight” it is used this particular formula based on the cosine.

The reflection vector r is the mirrored version of the incident light vector in respect to the normal,

this value is powered to an empirical element alpha for determine the shininess of the object, in

fact is called shininess coefficient.

If we link this to the microfacets approach, then the specular reflection will be very smooth in the

Phong, because the directions are uniform along the perfect specular direction, this means that the

microfacets are oriented in the same way.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

135

The change in value of alpha will change the graphic effect, usually between 100 and 500 we have

metals, and values under 100 means that the highlight is very large.

The whole Phong model
It’s an extremely approximated version of the rendering equation, and it is valid for just one light.

It considers the emitted light for surfaces simulating the light sources,

In case of more lights, we have another formula which is more complete because it considers a

sum for all the lights and there is also the decay rate from the inverse square law :

It’s an empirical model and if you think to it, linking to the microfacets approach it is a very

strange idea the material is at the same time rough and smooth.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

136

Having together a diffusive and specular means that we can visualize the BRDF has a volume,

this volume describes the direction and the intensities of the overall reflections (final result of the

BRDF).

• The ambient is a simple and small hemisphere, this because I simply add something in all

the direction.

• The diffusive is a hemisphere it means that I reflect in all the possible direction, the radius

of this sphere is given by the cosine between normal and incident light.

• The specular is a longer lobe that points to the direction of the specular reflection, which

changes in based of the direction of the vector for incident light.

If we put everything together we have the result of the BRDF model, this strange volume is visual

description of the BRDF (all the possible directions of the reflection and the intensity).

Blinn-Phong model 1977
The real most used illumination model is the Blinn-Phong model which is heavily the same but

with an optimization. Blinn is another very famous scientist which has contributed a lot in

computer graphics.

It changes the specular component part, it doesn’t consider anymore the angle between 𝒓 and 𝒗,

but it uses a new vector called 𝒉 (half vector). This new vector is halfway between 𝒍 and 𝒗, and in

the new formula will used the angle 𝛙 between 𝒏 and this new vector 𝒉 instead of the one

between 𝒓 and 𝒗 ø.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

137

The half 𝒉 is really simple to compute is just the sum between 𝒍 and 𝒗. The angle 𝛙 is always less

or equal 90°, in this way you can avoid checking for negative dot product, and it is easier to

calculate then ø because you can avoid calculating 𝒓. Since 𝛙 cis smaller then , there is the need

for a different value of shininess ά.

It has been proposed in 1977 (it has been implemented when the computational hardware wasn’t

like nowadays, and they had to care for everything). The techniques was developed for

optimization reasons. However, this is the most used illumination model.

Physically based BRDF models - GGX
Or in this specific case we should talk about physically based BSDF, because we are considering

something which manage also the refraction. At a certain point when the computational power and

the possibility of the graphics programming allowed to develop our own illumination models and to

performs in the shaders, research suggest finding more complicated illumination model.

This new model has been proposed :

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

138

It is based on the model we have already seen; it relies on the same background but for the

specular component is absolutely more complex.

The specular component is based on three values :

• Fresnel reflectance (𝐹).

• Microfacets distribution (𝐷, overall description of the kind of reflection, rought or smooth).

• Geometry attenuation (𝐺).

This equation has been proposed by Cook-Torrance 1981, however in the years has been used to

enhance the original proposal of Cook-Torrance and actually it has become a sort of template,

where different 𝐹,𝐷 and 𝐺 are being sued to enhance the original model.

What will be illustrated right now isn’t the original model, but a template called GGX, which is the

most used right now for physically based materials. They mainly change the 𝐷 and 𝐺 factor, the

𝐹 remains almost the same.

Fresnel Equations (F)

These equations come from physics; they are equations proposed for describing the behavior of

the light when the light moves between two media with two different refractive indices. The light is

incoming from the right 𝑳, part of the light is reflected, and part of the light is transmitted inside the

material (water), and the direction of the transmission is given usually by the ratio of the two

refractive indices.

Part of the light is reflected and another part of the is trasmitted inside the material, the direction

of the material is given by the ratio between the two refraction indices which are typical

parameters of the two media.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

139

For the law of the conservation of energy the sum of the reflected and transmitted light is equal to

the incoming light 𝑳 ().

The Fresnel’s equations says that the transmitted light (or refracted) is given by :

1 − 𝑅𝑓(𝜃)
sin2𝜃𝑖

sin2𝜃𝑡
𝐿𝑖

Where 𝑹𝒇 is the reflection coefficient, which is a parameter that describes how much of a wave

is reflected by an impedance discontinuity in the transmission media.

While for the Snell’s law we have this equivalence :

𝑛1 sin(𝜃𝑖) = 𝑛2sin (𝜃𝑡)

With this equivalence I can change how I can retrieve the transmitted component which is no

more based on the sines of the angle and use two known parameters the refraction indices.

Given this equivalence now I can simplify the Fresnel’s equation using the Schlick’s

approximation. We know that for the Fresnel’s equation we need to calculate and to store

samples between 0° and 90° (from the incoming 𝐿 light quadrant). Where the 𝑹𝒇 coefficient, is

the amount of the reflected light for every possible angle of incidence, so I need to store all the

value of Rf for every angle usually between 0° and 90°.

The Schlick’s approximate the 𝑹𝒇 by using only the values at 0°.

Given this we can simplify even more, even if this one depends at the value at 0° we still

need that value. I can simplify because the value of 𝑹𝒇 on 0° degree is a determined ratio that

depends on refraction indices that we have.

𝑅𝑓(0°) =
(1 −

𝑛1
𝑛2

)
2

(1 +
𝑛1
𝑛2

)
2

And also, in the shaders often you use this angle between 𝒗 and 𝒉 instead of the 𝐜𝐨𝐬 (𝜽𝒊), the ratio

is computed between the refraction indices, and with that you can compute the simulation of the

Fresnel’s equation.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

140

The only materials where the approximation is a bit rough is aluminum and iron.

Microfacets distribution (D)
This is the description of how the microfacets are oriented, if they are randomly oriented the

material is completely diffuse if they are oriented in same we have a specular reflection.

For the estimate we use a statistical distribution if the material is smooth or rough, the original

Cook-Torrance use a different distribution. The GGX model uses this distribution which actually is

considered the name of the whole illumination model which is the core of the model (from the

Trowbridge-Reitz scientists, but GGX is simpler to remember).

It is mainly based on an alpha value, which is a value between 0 and 1 which describes if the

surface is smooth (when 0) or rough (when 1). In the original paper for the GGX they make a

mistake instead of the pi there was written 4, then it got corrected, some texts still have this

problem.

The only parameter is alpha, the other ones are already present.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

141

This formula provides different effects regarding the issue with , in the Blinn-Phong you can mix the

different components and you have different materials, but the range of different materials is

limited. With this GGX approach you can tune small changes in the overall visual effect of the

material, it is a really fine and small changing control, the material doesn’t change instantaneously.

Geometry attenuation (G)
At microscopic level we have something which is done by small facets that are oriented in different

ways. If the light coming on the microfacets, it may happen that the light will get partially occluded

by the microfacets itself.

In some cases, this occlusion is called geometry obstruction and in other cases is called

geometry shadowing. The have added in the FDG formula this weight in order to attenuate the

reflected light by means of internal self-reflection.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

142

This is the original formula, which is called 𝑮𝟏, everything is based on 𝒏 and 𝒗. This is the Schlick-

GGX method which was used from Pixar.

But in the GGX version we are using the 𝑮𝟐, because it combines two 𝑮𝟏 functions one for

geometry obstruction and one for geometry shadowing.

Is an overall darkening of the overall reflection.

Empiric BRDF - Ward anisotropic model
This is a different method (and for anisotropic) which is presented from Ward (worked at Dolby

Digital, …) when was working at university he produced and proposed prototype for the gonio

reflectometer and measured a very large set of anisotropic materials. Then proposed this empirical

model for approximate values for anisotropic materials.

It has 4 parameters :

• Diffusive component 𝑝𝑑

• Specular component 𝑝𝑠

• Standard deviation of orientation of microfacets α, this actually consists of two components:

o The roughness index for anisotropic materials consists of 2 indices 𝑎𝑥 and 𝑎𝑦.

For describe these two indices we introduce the direction of the tangent vector for the 𝑎𝑥 index,

and the bitangent vector for the 𝑎𝑦 index (which is given by cross product normal and tangent).

The formula :

There is no link with physical models, is just a mathematical elaboration.

Other models
We saw the most common, there are others for diffuse reflection :

• Minnaert model

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

143

• Oren-Nayar model

And others for anisotropic reflection :

• Ashikhmin-Shirley model

• Heidrich-Seidel model

Texture mapping & Procedural Textures
Texturing is the use of images of different nature to enhance the appearance of objects, regarding

color, details but also using the information in the image to guide the effect of the illumination

model.

Image’s assets can save in external files on disk and in a similar way to mesh objects be loaded

during the Application Stage, where the images will be loaded in memory and then will

transferred on the GPU memory. But also, images can be generated procedurally on the fly.

Texturing approach
In my mesh a correspondence between every vertex in 3D with a 2D pixel of the texture, this

pixel is called texel. When I need to use the textures, I use this mapping (or correspondence),

which is a set of two coordinates (𝑢, 𝑣) for read the values of the texels and in someway applying

that on the mesh.

The texel value is used in the computation of the final color of fragments, this texel can be

also combined with other colors.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

144

This means that for each vertex I have the three coordinates (x,y,z) in 3D space but also the (u,v)

texels which are two coordinates. The (𝒖, 𝒗) coordinates are inside a range between [0, 1].

When I need to do texturing I take the value in this range and I convert them in integer values that

are inside the range [0, rows] and [0, cols] for scaling the coordinates on the actual dimension of

the image then I read the color (and in the end some computation will be applied on the mesh).

It is possible to have different set of (𝑢, 𝑣) coordinates this because is possible to have different

textures.

The idea is when I have to process one triangle, I need to know triangle which part of the image is

assigned to the triangle.

We can express the process and the different option using a texturing pipeline, which is a sub-

pipeline just for texturing.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

145

Simplified texturing pipeline

Projector function
The first stage is the projector function, in this stage it is created a relationship between the 3D

object reference system and the 2D texture reference system (this is a mapping between 3D

vertices and 2D texels). The letters u and v are the most commonly used for expressing texture

coordinates (called UV coordinates), but there is also (𝑠, 𝑡).

These UV coordinates can be expressed manually by the developer, but in case of more complex

models they are already stored in the 3D Mesh file, so they are usually part of the model object

(COLLADA, .obj, …), in case of manual assignment through modeling software is called mesh

unwrapping.

From the developer side there is the need to make a correspondence for each triangle with a

portion of the image described by the texels. These texels values are not applied until the

fragment shader, during the rasterization the UV-coordinates are interpolated on the mesh,

then during the fragment shader the textures are read and applied.

Projector function : mesh unwraps
This is a process which is not usually done by the developer, it occurs at the end of the modeling

where you model is defined. After that, the modeler will create the UV-coordinates using visual

tools which gives you possibility to select line of edges and using this set of vertices to unwrap the

mesh on a plane. The plane is the texture, usually this kind of tools will give you a visual pov to

see where the unwrapped mesh on the plane is distorted or not.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

146

Usually, the model will be broken in different parts, so that you can apply different colors. Actually,

this process is used when you have to create the texture by digital painting.

This is why you see these textures as packed in a small square, where digital painters color the

textures directly in the modeling software. In this case the texture is created during the creation

of the asset, so is not a real image until then, then will be saved near the mesh object file.

Then the Vertex-Texels correspondence will be made automatically by the mesh unwrap

technique. For objects created in this way as developer we have to do nothing for the projector

function, because it is already done for us.

Projector function : intermediate surface
In case of simpler models, like spheres, cubes, cones, … the UV-coordinates can be generated

procedurally. The 2D texture image is mapped on an intermediate surface (like a sphere), there

are mathematical function in projective geometry that tells how to map a 2D plane (the image) on a

3D object, then the UVs are mapped from the intermediate to the final surface.

 After that the mapping to the final object happen in different ways using the intermediate surface.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

147

Considering a cylinder for an intermediate surface, and that there is the final object to be mapped

inside, I can have three different kinds of mappings :

1. I can go from the cylinder to the center of the object, where the color of the object be

mapped on the internal normal of the cylinder.

2. I can consider the normal of the object vertices and from there i externally read the color

of the cylinder intermediate surface.

3. I can start from the center of the object and I go in a radial way outside and again when i

intersect the cylinder I read the color on the cylinder.

Corresponder function
Once we have the UV-coordinates, there is the second stage of the texture sub-pipeline, the

corresponder function.

We now have to read from the texture, we can add some flexibility during the mapping of the

texture of the object. The texture is expressed in [0,1] range. In the texture space we may “think”

to have a space with two axis and the texture between 0,1. But, if I try to express the UV-

coordinates out of this range I have to apply some kind of mapping policy the provides me

different kind of effects when the range is exceeded .

• Repeat : outside the range I just repeat the texture.

• Mirror : outside the range I apply the rotated and mirrored texture.

• Clamp : outside the range I assign the value of the last pixel on the border.

• Border : outside the range i use a specific color.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

148

Texture values

Before reading the final color from the texture I read the value from the image, and then i can also

apply other processing before actually using the value. This kind of transformations are linked

directly to the Image Processing field.

In the most common case, a 2D image is “attached” to a surface, after it is being loaded from disk.

But in the case where the surface covers an area that is larger or smaller than the texture

dimension, there is no more a direct correlation between Texel-Fragment.

Magnification

In this case the texture image is smaller must be enlarged to reach the match between texels

and fragments, the smaller grid in light grey is the texture.

We solve it using filtering, we get this technique from image processing field.

During the mapping from UVs [0,1] range to the discrete [𝑤, ℎ], there is a really low probability

to match a texel center.

There are two commonly involved techniques to fix this problem, the big black dot represents the

UV-coordinates in the texture image space, and the four colored squares represents the

texels :

• Nearest point (or nearest neighbor) : where I choose the closes texel to the sampled one,

the problem that in a rasterized image (so a true color image) this led to a very strong

aliasing. Since that there will be a strong difference of colors near fragments, in the color

will be much more shaded.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

149

• Bilinear filtering (or more, but you will pay it), this is a more realistic approach, where a

weighted average between the 4 nearest texels occurs and lead to a new pixel.

Minification

In this case one texels corresponds to many fragments, for example the object is far from the

camera and the dimension of the texel is bigger than dimension of the object. One texels cover

more than one fragment.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

150

In this case we solve this issue by using a more sophisticated approach, the mipmaps. I have my

textures and instead of subsample and minify at runtime, i precompute different version of the

image at reduced dimension. This operation will obviously occur offline, during the asset

preparation.

In this case i’m using more data, but they can be organized in memory in a particular way which

lead to store only 33% more memory of the original buffer.

During runtime, in case of a basic approach without mipmapping it will result in lot of gaps and

jagged lines effects, with mipmapping there is a better effect which is not perfect but lead to

much less gaps and overall jaggies from resolution reduction.

Even in the case of mipmaps is possible to apply filtering transformations, we are talking about

mipmapping filtering. These filters are applied to smooth the transition between different

mipmaps.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

151

This means that i take two mipmaps and i apply a filtering technique in order to select a color value

which is a blend of the mipmaps.

• The Trilinear filtering, this means applying the bilinear filter to the current mipmap and

next one, after that i interpolate between these values.

• The Anisotropic filtering enhances and changes the filtering considering the orientation of

the camera to the surface.

Regarding the techniques that changes the color effects of the image itself we finished, now let

space to the techniques that are able to change the rules of the illumination model

Bump mapping
This is the simplest technique; It is used to simulate wrinkles and perturbations without doing

modifications to the actual mesh surface. What actually happens is that the surface normals are

perturbated before the application of the illumination models, for changing the normals values it will

be used an heightmap (a grayscale image that contains the normals changes).

 I can attach a texture which has some information of the normals of my mesh and the final

effect will be a perfectly smooth mesh which appears after the application of this texture and the

illumination models as full of wrinkles and bumps.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

152

A bump map is an image which is composed of only gray values between [0,1], and these values

are weights that are going to be applied to the original normals of the mesh, in order to change its

direction. Then during the illumination model, I will read these new values, making it believe that

the normal are going in particular direction described from the texture.

But in reality i’m not moving any vertex I’m just changing the direction of the different normals,

but the surface is the same as described in the mesh model.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

153

Normal mapping
This technique is an advanced version of the bump mapping, in this case the normals are not

perturbed but substituted with a new vector. The XYZ components of the new normals are stored

as RGB colors in a new texture which is called normal map. The result is really effective.

The normal maps have usually this kind of colors, this because we want to pass a vector which is

a substitute of the normal and we need to express this vector in a reference system. The normal

maps tend always to have this purplish color, because the larger values are usually stored in the

blue channel of the RGB.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

154

The new normal XYZ components are expressed in tangent space, this is a local reference system

composed by the normal, tangent and binormal/cotangent/bitangent (which is the cross product

between the other two).

After that, the new normal must be transformed to world space before being used from the

illumination model, so the same transformations that are going to be applied to the model are going

to be applied on the normal map.

The normal map is pre-calculated using a high-poly version of the model. In this way we can

reuse the high-poly normal map on a simplified mesh gaining an extremely good approximation of

the high-poly model.

Parallax mapping
This technique is used to enhance apparent depth in textures as stones, walls, etc … The texture

coordinates in a point are displaced by a function of the view angle and the value of the height

map/normal map in that point.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

155

Displacement mapping
This technique uses the texture to actually modify the surface vertices, the RGB values are used

to displace the XYZ local coordinates of vertices (this is really different from parallax mapping).

Procedural textures
There are algorithms that can generate a texture “on-the-fly”, usually we create regular patterns

(walls, …) or random patterns (marble, woods, …).

The computational resource is required to have different versions of the same kind of pattern in

order to avoid repetition and to enhance variability.

These patterns are generated using the UV-coordinates, on the basis of that we use thjis values in

a function that decides which part of the pattern you are on the subject and other parameters like

the vertex coordinate together with other specific textures.

Regular patterns (stripes, squares, regular polygon repeated, …)

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

156

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

157

Irregular patterns (veins in marbles, wood, and other visual randomic effects, …)

Procedural texturing was largely involved in the first years of computer graphics, this because of

the limited use of the external images for textures (the other alternative was solid colors).

It is still useful today, this because brings no issues related to resolution (it is created on measure

of the image), no issue related to magnification, minification of the texture image.

I avoid issue of repetitions of textures and border of textures, and with a good procedural technique

due to parametrization you can reuse the same approach several times adapting to different

situation.

With embedded systems and WebGL, where the environment has limitation on memory and

data transmission (not really a problem nowadays) the use of a procedural approach brings the

possibility to determine the materials from the client-side using some lines of code instead of a full

RGBA image.

Issues of procedural texturing
It’s not like painting, a mathematical check will occur, this will bring an unpredictability of the

result that could bring some serendipitous discover.

Reading from texture memory have his issues because it depends on the bandwidth of the

GPU and from the BUS, but with the current time this is less an issue then in the past. Anyway,

the procedural texture creation involves algorithms, so by nature they are more expensive

than reading from texture memory.

There is also a problem with aliasing, which is not trivial in some cases.

Procedural patterns GLSL

The idea is to have a whiteboard with the domain [0,1] on the 𝑢 axis and [0,1] on the 𝑣 axis. You

apply functions using the (𝑢, 𝑣) values as parameters and these functions assign as a result a grey

level between [0,1]. Actually, you are creating a map, this is kind of a map which may be black,

white or gradients values, and you can use this value between [0,1] to interpolate among two

colors.

In case of regular patterns are used functions like step, sine and distances. In case of random

patterns are used noise functions and its variants. The UVs of each vertex are used as

parameters inside this function.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

158

One function provided by the shading language is the 𝑠𝑡𝑒𝑝(𝑎, 𝑥) function, which it’s kind like an if-

else statement.

If 𝑥 < 𝑎 0.0 𝑒𝑙𝑠𝑒 1.0

A combination of steps is called pulse, but this isn’t predefined in the shading language. You can

create a pulse by subtracting two step functions (maybe using the preprocessor define). A possible

resulting map would give someone with the repetition black, white, black, white, …

Another function which is used in GLSL is 𝑐𝑙𝑎𝑚𝑝(𝑥, 𝑎, 𝑏), it performs a linear interpolation on a

specific value 𝑥 between two further intervals 𝑎 and 𝑏.

Another is the absolute function 𝑎𝑏𝑠(𝑥) which gives you a symmetric function.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

159

On the basis of this functions, you can apply repetition of the pattern as many times you want, this

by using the 𝑚𝑜𝑑(𝑎, 𝑏) function. The mod function takes two parameters and returns the

remainder of the Euclidean division between 𝑎 and 𝑏.

In the case where the second parameter 𝑏 is 1.0, the function will return the fractional part

(mantissa) of the first parameter 𝑎.

We can perform a trick and multiply the first parameter by a multiplier, and then use the result as

the first parameter of the mod function, with the secondo equal to 1.0. The result will be the value

of the future steps on the domain respect from the actual 𝑥, this means that will be performed a

compression along the domain in the range [0,1].

With regular patterns we have some issue with aliasing, because when we have straight lines or

curved lines we fall in the jaggies issue during the rasterization stage. We have to assign a grid of

colors for curved or diagonal lines.

In particular in the 𝑠𝑡𝑒𝑝(𝑎, 𝑏) function, when I suddenly change the frequencies of the information,

this problem occurs also in the mod function at the ends of the first interval.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

160

Approaches, to avoid dangerous techniques listed in previous slides u

The first approach to avoid “dangerous” techniques listed before, I can use the more sophisticated

blending functions like 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝 or 𝑚𝑖𝑥 or we use a specific feature of GLSL.

The 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝(𝑎, 𝑏, 𝑥) function guarantees a softer approach in respect of the brutal 𝑠𝑡𝑒𝑝(𝑎, 𝑏)

function, the first two parameters are always the two edges of the interval, the 𝑥 is the value where

the linear interpolation of the value will occur in the middle.

In reality the function is used as 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝(𝑎 − 𝑓𝑢𝑧𝑧, 𝑎, 𝑥), where the first value is decremented

by a small transition interval called 𝑓𝑢𝑧𝑧. This function will give a much better result.

By saying this we can redefine the 𝑝𝑢𝑙𝑠𝑒 function as a subctraction of two 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝 functions.

𝑝𝑢𝑙𝑠𝑒 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝(𝑎 − 𝑓𝑢𝑧𝑧, 𝑎, 𝑥) − 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝(𝑏 − 𝑓𝑢𝑧𝑧, 𝑏, 𝑥)

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

161

The last image is the map that will be used to assign the colors, that will be used in the shader that

will read from the texture and then applied it.

Combination of functions
It is possible to combine different functions, more you combine hardly will be to predict the

behaviour of the result. For example, is possible to apply a 𝑚𝑜𝑑 function to a pulse function and

obtain a repetition on the 𝑡 axis.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

162

It is possible also to perform more complicated things like using that function and apply to that

another smooth step but this time on the horizontal axis 𝑠.

Antialiasing: analysis of fragment neighborhood
In GLSL is possible to use two functions 𝑑𝐹𝑑𝑥 and 𝑑𝐹𝑑𝑦, they both take the value of the fragment,

and they check the difference between the fragment on the right and the one on the top.

This is the only exception in the pipeline where the fragments are not elaborated completely

independently.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

163

In this way we can adapt dynamically the fuzz transition of the smooth step, because I can see

the difference between the fragments and i can apply a different fuzz which performs the best in

that situation.

As it is possible to see in the code it calculates the 𝑓𝑢𝑧𝑧 offset dynamically in base of each

fragment distance, and then use this value for the smoothstep function.

This function is applied for every fragment, and it checks the difference between the two near

functions, and it adapts dynamically the antialiasing function. This is a very effective method, and

𝑑𝐹𝑑𝑥 and 𝑑𝐹𝑑𝑦 are computationally more expensive of other GLSL functions, because they

access to the information of the near fragments.

Now let’s move on random patterns.

Noise
In case of natural surfaces, they present irregularities like veins, stains, stripes, … this kind of

random patterns are commonly based on noises. With “noise” we refer to a set of mathematical

functions used to perturb in a pseudo-random manner a procedurally generated pattern.

There are different noises, but they usually share the same properties :

• Repeatable, they are defined in ranges like [0,1] or [−1, 1], there is no regular or repeated

patterns must be shown. They are isotropic (means that they are invariant to rotation) and

they can be scaled in many dimensions (1,2,3, …).

• Continuous functions which appear random.

Perlin Noise
This is the most common kind of noise, proposed in 1985 from Ken Perlin, used in the original

movie of Tron. Until the end of 2007 and so on it put online a set of slides explaining the procedure

of Perlin noise.

How it works:

We start from a regular grid of points, which is called “lattice”.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

164

Then for an input point 𝑃(𝑥, 𝑦), you consider also the four points on the corners where the cell of

the grid is placed.

Then there will be created a pseudo-random gradient associated to each one of the corner-

points.

Also, will be created a new set of four vectors that starts from the points on the corners and points

to the input point 𝑃.

The noise is created by the combination of the dot product between the internal vectors

(gradients) and the external vectors.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

165

It is possible to achieve different version of the noise by applying different functions or

displacement values to the original noise (which is used as a basis for other noises).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

166

Turbulence
The idea of summing different execution of noise with different parameters is called turbulence.

Different noise executions are called octaves. As said previously, these octaves will have different

parameters.

This is taken from Fractal Brownian motion :

Is possible to consider also an Amplitude-frequency system, which gives a greater control and

flexibility of the final effect.

This because we can use two parameters to edit the noise function

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

167

Then the octaves with different amplitude and parameters will get summed

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

168

2D representation

This system offers a very large “gamut” of possibilities. There is other expansion of the basic

Perlin noise, the simplex noise and the multifractal.

Simplex noise (variant of Perlin Noise)

Proposed by Perlin, is a more complex extension of the Perlin noise and it is multidimensional.

Proposed to avoid directional artifacts. In some cases, it could be visible some part of the noise

which seems more oriented in a specific direction rather than completely random.

Multifractal (variant of Perlin Noise)

The functions are coming from the fractal field of mathematics, in this case there is more

variability and contrast and a more ridged effect.

Worley noise

Also called Cellular Noise (or Voronoi), has a completely different approach.

Given a grid of points and an input 𝑃(𝑥, 𝑦). The distance between the input 𝑃 and the 𝑛𝑡ℎ −

𝑐𝑙𝑜𝑠𝑒𝑠𝑡 point 𝐹 on the grid as the basis for noise calculation.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

169

I use this distance as a basis for the noise calculation. This noise is more computationally

expansive then Perlin Noise, but we usually don’t apply the sum octaves. It is mainly based on

which closest point to consider and the function used for the distance (Euclidean, Manhattan,

Voronoi, …) and I can also consider more closest point and I can apply operation above them.

GLSL and noise
You may think that we have a predefined noise function in GLSL, well no. This is a very interesting

situation, because in the specification you set some rules and then the developers develop the

hardware.

They never implemented a noise function; they never reached an agreement of which kind of noise

to implement as default in the noise function. In some implementation of GLSL we have a function

call 𝑛𝑜𝑖𝑠𝑒() but it returns zero, it never got implemented.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

170

Layered shader
We have two layers with different materials, and then we have something to blend them

together. This is the result of the procedural function. Both layer and mask can be generated

procedurally.

Global illumination techniques
When we talk about global illumination in videogames we may be sure that we are not talking

about the global illumination as in the movies, is not the same of full path-tracing approach of

movies.

In real-time graphics we are talking about the same visual effects given by global illumination like

shadows, reflections, indirect illumination components,…

In the real time you always rely on local illumination model, all these effects contribute to the

realism of the image are usually added through additional techniques.

The illumination models compute locally the color, then the visual realism is obtained through

additional techniques like shadows, reflections, simulation of indirect illumination components are

introduced as additional techniques (and not a global illumination engine like a path-tracer)

since they are not directly linked with the illumination model. This different use of techniques

provides different levels of realism.

The state of the art in the last years was the use of textures mainly to add the effects rather

than the illumination, often textures who are pre-baked.

Hemisphere lighting
Very simple way for simulate global illumination. In the real world the light bounces on the

ground and illuminates you from the bottom, for example if you are in a garden with the grass, the

light coming from the bottom is greenish.

It is possible to simulate this by considering your environment as being inside two hemispheres,

one with the color of the sky and one with the color of the ground. You then decide the color of the

object by interpolating between the sky and the ground color.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

171

It is a simple linear interpolation between sky color and ground color.

However, to compute it faster and to avoid the if-statement in the shaders (which is not

computationally efficient to have in the shaders, since it is GPU-code), instead of calculating the 𝑎

considering the 𝑠𝑖𝑛 you consider the 𝑐𝑜𝑠 which is really fast because it is a dot product.

The 𝑐𝑜𝑠 will provides the same are under the curve but will be computed faster then the 𝑠𝑖𝑛 (dot

product).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

172

It is more related to diffusive reflection, it can be integrated with other light sources like then sun,

lamps and so on.

One of the issues of the hemisphere lighting is that the self-occlusion is not very well simulated.

The self-occlusion is the idea that an object always cast a shadow on itself, and in some cases

the phenomenon is called ambient occlusion.

Ambient occlusion
In the bunny we consider every point as independent, where the fragment of the ear is computed

in the same way of the fragment of the paw. But what if the ear produces a shadow on the paw of

the bunny, now the color of that fragment is dependent by an effect given from the ear fragment.

The ambient occlusion tries to darken some area of the object in the scene because we have a

self-occlusion, and it is used for render in a better way the shading of the object.

If we treat the fragments of an object as they are all mutually independent (image on the right),

then this means that we have an effect which is not really realistic.The problem of the local models

is that they don’t consider the inter-reflections, the ambient component in the Phong model is a

very rough way to approximate the indirect illumination.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

173

The classic ambient occlusion technique was developed by Landis in 2000, at Industrial Light &

Magic, to improve the quality of the environment lighting used on the computer-generated planes in

the movie Pearl Harbor.

 does these sequential operations for a single point (image on the left) :

• Ray-casting of lot of rays on the hemisphere (from the side where comes the light) where

is centered the point.

• Calculate the distances of the intersection points.

• Weights these distances and combine them in an attenuation factor.

• The attenuation factor is used during the computation of the illumination model.

For example, 𝒑𝟏 is a bit more open the 𝒑𝟐 and 𝒑𝟎 the idea is that i combine al lthe directions i

wconsider the main overall vector given by the avarage of everything, and we use that vector for

the computation of illumination.

SSAO (Screen Space Ambient Occlusion)
Screen Space Ambient Occlusion, as the name says this technique is screen space based, and

it has been proposed by Crytek, it occurs during the fragment shader.

We have this potential fragment (small pixels oriented to the camera), I have the depth of the

fragment (obtained during the Z-buffer depths), I have these different depths of fragments. If I take

this fragment and I compare the depth with the neighbor fragments, I can consider how this

fragment is occluded or not to respect to the others.

This technique is based on an analysis of the depth buffer of the scene, and it computes this

ambient component in a dynamic way (not like the Phong) by adjusting it in base of every fragment

of the scene.

The fragments to test are selected with a spherical kernel which is randomly rotated at each step.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

174

Image-based techniques
These techniques are based on the use of additional textures.

Environment mapping
This was proposed as soon as the computational power of the graphics hardware has increased in

time. It can be used both for virtual scenes that for real scenes, let’s start with the first one.

I use a texture which describes an environment, and i sample this image which represent the

virtual environment of where the object is placed, then i sample this texture to simulate specular

effects of the object. We are not talking about specular lights; we are talking about the mirror

effects of an object.

This kind of reflections natively generated by path-tracing, in that case most of these techniques

are not added in the separate moment, they are computed in the overall rendering process.

Anyway, I need an in image which is in a format of panoramic image or more peculiar formats than

that.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

175

In this technique we don’t assign the texture to the object, we don’t rely on UVs, we consider the

panoramic image as mapped on a sphere and we use a reflection vector and his components

as UVs to read from this sphere/cube.

We compute the reflection vector starting from the view vector, the reflection vector is used for

sampling the environment. Then we use that value to bland it with the result of an illumination

model. The map can be pre-filtered to apply blur, in this way is possible to simulate more glossy

effects.

In 1986, Chris Green introduced the cubic environment map, usually called cube map. This

method is far and away the most popular method today, and its projection is implemented directly

in hardware on modern GPUs.

The cubemap is created projecting the environment onto the sides of a cube positioned with its

center at the camera’s location. The images on the cube’s faces are then used as environment

maps. Usually, a cube map is often visualized in a “cross” diagram, i.e., opening a cube and

flattening it onto a plane.

Anyway, on hardware cube maps are stored as six square textures, in this way there is no

wasted space.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

176

It is possible to create cube maps synthetically by rendering a scene six times with the camera at

the center of the cube, looking at each cube face with 90° view angle. Cubic environment

mapping is view-independent.

This environment map can be an image of a real scene or it can be a reflection of complete virtual

environment. In case of real scenes, the first time that the environment map was used for real

scenes was in Terminator 2. for real scenes

Now we have lot of different techniques, they are all based on photographic acquisition. We can

take lot of pictures and then stick them together with an imaging software, or we can use lens

with a very large FOV (fisheye), or i can use a mirrored ball.

Once i have the environment map i can do a fully reflective effect but is possible also to simulate a

blurred effect, there are two possible approaches.

1. I can take one texel and i use that value, for the blurred effect theoretically i can apply a

blur directly on the map, anyway there are issues at the borders of the cube map.

2. I can use a gaussian function or cosine function to sample the map, this means that I

don’t sample just one direction but i also sample some other texels and I average together

resulting in a blurred effect.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

177

Shadow map
Shadows are something which is really relevant to the realism of a virtual scene, but they aren’t

computed natively by local illumination model, this is calculated in a separated way.

This technique is based on two passages, I will use my GPU pipeline two times :

1. Move the camera in the position of the light, and store everything from the POV of the

light, saving the Z-buffer image. What is in the shadow of the scene, won’t be visible in

the depth buffer image. An object is considered fully illuminated if there is nothing between

the light and the object, this means that everything which is visible in the depth image (light

POV) is illuminated by the light.

2. I use my real camera, and when i have to compute the illumination in each fragment i

compute the illumination model, then i check if that position in the scene is present or

not in the auxiliary buffer from the POV of light, if it is present the point is illuminated

otherwise it is in shadow.

Will create the final frame using the data saved in the first step for the final effect.

Pros

• Shadow map creation has a linear computational cost.

• Constant-time access to shadow map, once it is created you will have just to read a

texture.

Cons

• Has all the techniques that use more than one GPU pass, we are using the GPU two

times for one frame, this means that everything must be well done and implemented.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

178

Percentage Closer Filtering (PCF)
In normal shadow mapping we have jagged effects, since we magnify the texture when we apply it

on the scene.

It is possible to apply some blurred effect, or we can apply the PCF, which consists in a filter, it

samples more time the shadow map pixels and it average them together. Won’t result in the best

possible effect but is much better than normal shadow mapping.

Light maps
If i know that my scene has lot of static meshes and lot of lights which are static, then there are

lot of illumination components in my scene which will be the same in every frame, this will be a

waste of time to compute again at every frame.

So, i can save during the creation of the asset a pre-baked texture with the light, and then

when I’m in real-time i read from this texture and i apply the value to simulate the illumination and

maybe i apply in real-time the effects which are dynamic, and I combine them with the baked and

precomputed data.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

179

Shadow (definition)
The object which is casting the shadow is called occluder, the surface where the shadow is casted

is called receiver.

Then usually the shadow is composed by umbra (the full shadow) and penumbra (soft shadow

where part of the light arrives).

In case of point light we can only have hard shadows (umbra), we talk about soft shadows

(penumbra) with area light.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

180

Projection-based shadows
We can use projection-based approach to shadowing, exploiting the concept of the umbra

penumbra in the shadows.

We can determine the range of directions which tightly enclose the occluder, the minimum

left and the maximum right directions, that will get projected on the receiver (the image on the

left).

So, we can create an actual shadow polygon by projecting the vertices of the object on the receiver

plane given from the POV of the projection point which is the position of the light. In this case we

have hard shadow, but it is possible to apply some blur later.

Shadow volume
Not so different as a concept, presented by Heidmann in 1991, it can be used on any GPU, the

only requirement is a stencil buffer. This is not an image-based method, like the shadow mapping,

this means that avoid the sampling problems producing correct sharp shadows everywhere.

Anyway, shadow volumes are rarely used nowadays due to their unpredictable cost.

We can consider the shadow as a volume, the shadow is made by the light source and the

occluder, initially we have volume of light which is expressed as a pyramid.

Then when an object is placed inside the volume that will cut the volume in two and the volume

after the occluder will be called shadow volume.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

181

After the creation of the shadow volumes from the POV of the light source, we move to the

POV of the camera.

The idea is to consider a ray and a line from the camera to the point to be rendered, and to

count how many times the ray crosses the faces of the shadow volume.

Every time the view-ray intersects one side of the truncated pyramid of the shadow volume from

the front-face (in respect to the viewer) will occur an increment of the counter by 1. Every time time

the view-ray intersects a back face i decrement the counter by 1

We keep doing these computations until the view-ray hits the object that we want to display in the

final pixel. If the counter is greater than 0 , then that pixel is in shadow otherwise not (is not in the

shadow volume).

Anyway, doing that with the rays is time consuming, there is better solution that involves the stencil

buffer, which will do the count for us.

Image based lighting (IBL)
In the case of illumination another approach that has seen a lot of interest in the last years, is the

use of image-based lighting effects. With diffusion of digital images, with possibility to acquire

high quality images we have also proposed the use of images as illumination sources.

This 3D rendering technique involves capturing an omnidirectional representation of real-world

light information as an image, typically using a 360° camera. This image is the projected onto a

dome or a sphere analogously to environment mapping but for describe the illumination.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

182

External images used to describe/calculate illumination of a virtual scene. These images are

supposed to store in every pixel a value which is approximating the real-life value of the scene.

With the introduction of HDR (High Dynamic Range) images, which have in every pixel’s values

greater than the classical [0, 255], they are supposed to store in every pixel a value which is

approximating the real light value (the luminance) of the scene.

Using that value of luminance, we can use it for illuminating the scene, having as a result virtual

objects which seems to be present in real scenes. This is a very effective technique, with very

realistic illumination effects.

The idea as the environment map I have this HDR image, which is called Irradiance

Environment Map, which is a Cube Map, but it is used in a different way respect to the reflection

map.

What the technique does, is to take every point on my object and to sample the

environment map in all the possible direction inside the hemisphere centered on the

surface normal of the object.

Every direction will point to an environment map, but as said before it won’t sample the reflection

vector it will sample along the normal and all the images of the hemisphere, then I will integrate all

the direction as possible centered on the surface and average them together.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

183

It is not something that we can apply computationally because it is too expensive, usually

what happens is that i take the environment map, and I pre-apply a filter (pre-filtering), which is

usually something like Gaussian filter.

Then i read from this filtered-environment map using the normal as UVs in that case the texel is

the result of a filter.

Current state of real-time Global Illumination
Actually (2021), we are living in a transition time, for the real-time raytracing, this means that the

present and the future must be considered together until the future will predominate.

They are merging lot of techniques together, for complex scenes with high number of light sources

and high number of static and dynamic 3D models they are not possible.

Usually in complex scenes we have lot of precomputation (pre-baking) or everything which is

static or diffusive, for example deferred shading is used a lot for scene with lot of lights and lot

of dynamic lights.

The current Global Illumination approaches try to merge and balance different techniques :

• Pre-computation/pre-baking of static and diffusive components (like lights and shadow

maps).

• Update of baked data only when needed.

• Real-time calculation of dynamic components.

• Relevant use and optimization of deferred rendering.

In case of Specular Indirect Lighting are used Environments maps and Screen Based Reflections

(SSR). In the case of Diffuse Indirect Lighting the techniques involved are Light maps (in case of

static geometry) and Irradiance volumes/VPL/VXGI for dynamic components.

SSR, Screen Based Reflections
The idea, we know that the reflection given by the environment maps are limited in case of

dynamic objects and with self-reflection. It is also time consuming recompute the

environment map especially with complex scenes. The use of SSR, use the fragment shader

and the deferred rendering technique to dynamically calculate perfect/glossy specular reflections in

these situations.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

184

It uses deferred rendering to save data of a certain number of textures, we save normals and

depth in Gbuffers. In this case the floor is made of very lucid marble and reflects the green point

on the yellow point.

I take the fragment and i consider in screen space (the fragment and normal is pointing towards

the camera), i take the direction of the reflection and i consider in those directions the fragments

which are intersected (at this point fragments are small squares placed in depth in front of the

camera), i take all the fragments intersected and i take all the colors and in the end i average

everything and i got my reflection.

We havea good result even for dynamic objects, which is something more convenient then having

the reflection map to have updated for each 6 views.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

185

Stochastic Screen Based Reflections
Frostbite has proposed an improvement of this technique, which is more complex, the approach is

the same, but we compute also depth mipmaps. I use the original approach for the basic

reflections, and i compute a hierarchical tracing of rays inside the mipmap of depth for subtle and

sharp reflections.

I use also the BRDF of the material to determine where to consider the directions of rays, and

there is lot of complex optimizations to re-use point of intersections. The first one is the first pass;

the bottom light added a rugosity of the terrain for increase the overall quality of the image (look at

the finger of the hand of the character).

Irradiance volumes
This technique not so novel but is still used as base for more complex considerations about global

illuminations, since light maps works only for static objects.

The idea is to subdivide the scene using a grid, and to generate a cube map for each “static

position” defined by a sphere. During rendering when i have an object in certain position of the

scene i take the positions on the grid close to that point and i take the cube maps close to that, and

i use this cube maps to compute the illumination.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

186

Is something which has been extended in different ways.

Virtual point lights (VPL)
The most used in Global Illumination models combine static and dynamic techniques for the

calculation of indirect diffuse illumination.

In Global Illuminations the bouncing of light is directly calculated by the implemented rendering

engine, in real-time is being simulated by placing VPL, which are classical point lights but that

aren’t linked to the actual real position of the light sources, but they are placed on the walls in

order to illuminate the object from the side in a similar way to the bouncing of lights.

This means that they are lights which are created for simulate the bouncing of another light source.

NVIDIA VXGI (Voxel Global Illumination)
Voxel Cone Tracing implementation, a really complicated technique for computing the Global

Illumination and still maintain high performance in real-time graphics.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

187

The render starts from the light sources, the scene is subdivided in Voxels, which is a hierarchical

structure similar to octrees where is subdivide more where the scene is more computationally

dense. Then the incoming radiance and light direction is baked inside the Voxel, this is done

for every Voxels, this is an approximation that tells how strong the light of a Voxel is.

Inside the Voxel data structure will occur a filtering of the irradiance values and light directions.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

188

Then it is applied a version of ray tracing which is called cone-tracing, which is an approximation

of raytracing, where i consider a cone of rays oriented in a particular direction. Along the

cones they take the intersection of the cones with Voxels values of the BRDF of the object and

they place and use together to compute the final illumination. The results are extremely realistic.

Real-time Raytracing
Every time we talk about real-time graphic and global illumination we talk about of additional

techniques separated from the illumination model.

In the Ray Tracing approach lot of additional techniques that are used in real-time graphics are

computed natively. In Ray Tracing and Path Tracing the reflections, indirect light and shadows

are computed natively.

This technique is used obviously based for image-oriented rendering, now the marketing is pushing

the “real-time ray tracing” in Videogames. Real time ray tracing in is complete and final form still

doesn’t exist for videogames.

As soon as GPUs become programmable by Shaders or CUDA, path-tracing and raytracing are

perfect for parallel computation, but the same full-raytracing approach is not possible, we have a

real-time framerate which is still not achievable with this technique (even with a limited amount of

geometry).

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

189

A general raytracing presumes that i shoot a primary ray from the camera, which will overpass

the frame of pixels (so they are at the beginning of the pipeline and not at the start). Then the

primary ray will intersect some object, and in consequence there will be a shoot of shadow rays

which will point to the light and i check if there is one intersection with this one.

If the intersection occurred with an actual light, then the point is illuminated by this one otherwise is

in shadow. Other rays that are sent on the previous step is the reflection ray which will bounce on

another object and so on. The reflection can be specular or like in the path tracing approach i

consider the volume of the BRDF (BSDF) and i search the direction inside the volume. It is

possible to consider a refraction ray.

Anyway, the actual Real-Time Ray Tracing is not a full implementation of a path tracer, with the

advancement of computational resources of GPUs, was possible to introduce some aspects of

Ray Tracing inside the real-time rendering pipeline (hybrid approach, through ray tracing

shaders). The power of these technical solutions introduced a hardware which can perform some

part of the operations, the first example comes with the NVIDIA RTX platform, following the

proposal of the DirectX Ray Tracing API (DXR) and Vulkan.

After the proposal and distribution of first family of GPUs supporting ray tracing also the new

consoles PS5 and Xbox X they have graphics hardware supporting “Ray Tracing”.

We have not switched together to ray shaders, full real-time rendering using ray tracing is not

possible at the moment. There is the need of several rays per-pixel for avoid the strong

noise. Denoising techniques for real-time ray tracing are heavily investigated but still not good

enough for full real-time rendering.

On the contrary, several techniques and stages of rasterization-based GPU pipeline are heavily

optimized like rasterization, texture operations, deferred rendering and so on. The current

rasterization-based pipeline is the result of decades of optimization, lot of work of

optimization is already done and working greatly.

Shaders in DXR
The idea was to keep what is performed well by the pipeline and create a hybrid pipeline which

exploits classic rasterization techniques and also using the new Ray Shaders for lot of techniques

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

190

(reflections, refractions, ambient occlusion…) like the one we have seen, which are a lot easier to

perform with rays.

The idea of raytracing shaders is to try to discard this complex additional time-consuming

raster techniques and introduce partially the use of raytracing because they are easier to use

and simulate these effects with rays.

What happens is this, with the DXR we have this set of shaders :

• Ray Generation Shader : it is the main function which shoots the primary rays from the

camera. This process of shooting rays is performed using separated buffers in a way

similar to the compute shaders (which is something that helps to perform GPGPU

techniques inside the real-time rendering pipeline).

• The Intersection Shader, which works on two acceleration structure which are created

specifically with the use of raytracing, they are called BLAS and TLAS (the first for the

bottom-level and the other for the top-level).

• We can have inside the intersection shader approach a Closest Hit Shader, which

performs an intersection test and gives back the closest point.

• Any Hit Shader, which considers all the intersections along a ray (e.g.).

• Miss Shader, it performs some operation if there is no intersection.

Manuel Pagliuca A.Y. 2020/2021
 Master’s Degree
 Computer Science

191

Final considerations
Research on real-time Global Illumination is very active right now, there are two main approach the

rendering on game consoles and the rendering on PC.

Until 2 years ago we had PS4 and XBOX ONE generation and on game console you can’t update

the hardware obviously, this will make the user and developer stuck to work on the same

hardware for lot of years. In the case they would introduce a new technology again you have to

consider the generation of the console.

PS5 and XBOX X were not available, and lot of tricks for simulating the global illumination were

used. However, on PC the possibility of implement new technology is much higher, since the GPU

hardware is continuously updated. Anyway, GPU are really expensive, and only a small

percentage of enthusiasts can change the hardware with that fast pace. Recently proposed

Global Illumination techniques are often implemented exploring the potentialities of the last GPUs.

Some time is needed before they are included in production game engines.

	Rendering Pipeline
	Image-oriented
	Object-oriented

	Real-time Rendering Pipeline
	Application Stage
	Geometry Processing Stage
	1. Vertex Shading
	2. Projection
	3. Clipping
	4. Screen Mapping

	Rasterization Stage
	Fragment Processing
	Z-buffer algorithm

	Pipeline performance
	GPU Pipelines
	Vertex Shader
	Tessellation Shader
	Geometry Shader
	Fragment Shader (or Pixel Shader)
	Deferred Rendering

	Shader Model
	Unified Shader Model
	Unified Architecture
	GPGPU

	Polygon Meshes
	Euler’s polyhedron formula
	Mesh production techniques
	High poly vs Low poly

	Main 3D file formats
	Data Structure for Polygon Mesh
	Indexed mesh
	Half-edge

	Mesh Elaboration
	Tessellation
	Consolidation
	Edge Collapsing (Dynamic)

	Terrain Rendering (view-dependant)

	Transformations and Projections
	Scale Transformation
	Rotation Transformation
	Translation
	Homogeneous Coordinates
	Interpretation of transformations
	Affine Transformations in the 3D
	Euler Angles
	Axis/Angle Rotation
	Quaternions
	Perspective projection
	Canonical configuration for parallel projection
	Canonical configuration for perspective projection
	View Transformation
	Look At
	View-Frustum
	The canonical view volume
	Window to Viewport transformation

	Spatial Data Structures
	Bounding Volume Hierarchies
	Uniform grid
	Octrees
	Binary Space Partitioning Trees
	Scene Graph

	API for Graphics Programming
	Direct3D
	OpenGL
	Direct3D vs OpenGL
	OpenGL Evolution
	Vulkan
	Vulkan vs OpenGL
	Metal and fragmentation issue
	Limitations of using APIs for Graphics Programming

	Culling and Clipping
	Back face Culling
	Hierarchical View frustum Culling
	Portal Culling
	Occlusion Culling
	Clipping

	Rasterization
	Antialiasing
	FSAA
	MSAA
	MFAA
	MLAA
	SMAA
	FXAA

	Intersection tests picking
	Ray
	Sphere
	Implicit notation
	Explicit notation

	Intersection tests, rules of thumb
	Ray/Sphere intersection : mathematical solution
	Ray/Sphere intersection : geometrical solution
	Ray-Box intersection (OBB and AABB)
	Ray-Polygon intersection
	Crossing test

	Plane-Box intersection (OBB and AABB)
	Plane-Box intersection AABB alternative
	Plane-sphere intersection
	Sphere-sphere intersection
	AABB-AABB intersection
	Sphere-AABB intersection
	Separating Axis Theorem (SAT)
	Triangle-Triangle intersection
	View Frustum intersection
	View frustum testing
	Dynamic intersection tests
	Dynamic intersection tests : Sphere-Plane
	Dynamic intersection tests : Sphere-Sphere

	Picking
	Other techniques 1
	Other techniques 2
	shader-based techniques

	Collision detection (Collision Handling)
	Collision Detection
	Simple cases

	Collision Detection for complex scenes
	Broad phase
	Broad phase : Sweep-and-prune
	Broad phase : Grids

	Mid-phase
	Narrow-phase (optional)
	BVH at mesh level
	BVH, Collision Solids, Collision Map, …
	Collision Detection : Cost function

	Collision Response

	Physics simulation
	Accuracy
	Forces in Physic simulation
	Gravity
	Friction
	Linear momentum
	Impulse
	Angular momentum
	Torque

	Constraints
	Example-1 Collision of 2 objects
	Example-2 Ragdoll Physics
	How much realism is needed?
	Example-3 Spring-mass-damper systems
	Example-4 Vehicle

	Light sources in Computer Graphics
	Directional
	Point light
	Spotlight
	Area light
	Inverse-square law
	Materials
	BRDF, BTDF, BSDF
	BSSRDF
	Physically based BRDF
	BRDF
	Anisotropic BRDF
	Where do I found the BRDF for materials ?
	Rendering equation
	Illumination models
	BRDF Simplification
	Empirical BRDF
	Simplified models of light reflection
	Diffusive
	Specular
	Glossy
	Lambert’s cosine law
	Phong reflection model 1975
	Ambient component
	Specular component

	The whole Phong model

	Blinn-Phong model 1977
	Physically based BRDF models - GGX
	Fresnel Equations (F)

	Microfacets distribution (D)
	Geometry attenuation (G)

	Empiric BRDF - Ward anisotropic model
	Other models

	Texture mapping & Procedural Textures
	Texturing approach
	Simplified texturing pipeline
	Projector function
	Projector function : mesh unwraps
	Projector function : intermediate surface
	Corresponder function
	Texture values
	Magnification
	Minification

	Bump mapping
	Normal mapping
	Parallax mapping
	Displacement mapping

	Procedural textures
	Issues of procedural texturing
	Procedural patterns GLSL

	Combination of functions
	Antialiasing: analysis of fragment neighborhood

	Noise
	Perlin Noise
	How it works:

	Turbulence
	Simplex noise (variant of Perlin Noise)
	Multifractal (variant of Perlin Noise)
	Worley noise

	GLSL and noise
	Layered shader

	Global illumination techniques
	Hemisphere lighting
	Ambient occlusion
	SSAO (Screen Space Ambient Occlusion)
	Image-based techniques
	Environment mapping

	Shadow map
	Percentage Closer Filtering (PCF)
	Light maps
	Shadow (definition)
	Projection-based shadows
	Shadow volume
	Image based lighting (IBL)
	Current state of real-time Global Illumination
	SSR, Screen Based Reflections
	Stochastic Screen Based Reflections
	Irradiance volumes
	Virtual point lights (VPL)
	NVIDIA VXGI (Voxel Global Illumination)
	Real-time Raytracing
	Shaders in DXR

	Final considerations

