
Real-Time Graphics Programming: Deferred Rendering in Vulkan
Manuel Pagliuca - 975169
October 19, 2022

Abstract
The following paper will abstractly describe how it imple-
mented a deferred renderer using the Vulkan graphic API
for the course project of Real-Time Graphics Programming
started on 13/03/2021, @UNIMI, A.Y. 2020/2021.

1 Introduction

The deferred rendering is a rendering technique that
involves two GPU pipeline passes, the aim of that it’s
to obtain a strong optimization for the computation of
the lights in a scene (it was first suggested by Michael
Deering in 1988 [4]).

This technique involves the use of MRT (Multiple Render
Targets), which are auxiliary buffers for the storing
of the results from the first fragment shader. This is
done during the first pipeline pass, which is also called
geometry pass, on these auxiliary buffers are saved
information like depth, positions, normals, albedo,

The second pipeline pass, which is also called lighting
pass will access these buffers which contain these differ-
ent textures of the scene computed in the first pipeline,
afterward will apply the lighting computations only over
these fragments instead of calculating that for all the
objects (even the not visible objects) in the scene.

The advantage of using this technique is given by the
fact that the lighting computations are only done for the
fragments that will actually go to the screen, so you can
use the lights intensively in the scene.

The disadvantage is that if I use this technique in a scene
with low lighting computations I will use two pipelines
for a too simple a calculation, and therefore the rendering
technique will prove counterproductive (i use two pipelines
when I can do everything with one).

2 Development tools

2.1 Vulkan

Vulkan [5] is the latest cross-platform API for 3D graph-
ics and computing released by the Khronos Group on 16
February 2016. It is considered the successor of OpenGL
[3], and its aims are to provide high-performance 3D
graphics applications (like video games and interactive me-
dia). Unlike the predecessor, writing an application that
uses this API is much more verbose since it leaves you
complete possibility and responsibility towards the graph-
ics card.

2.2 Visual Studio 2019

The Microsoft IDE[6] is an extremely powerful tool for the
development of a graphic application thanks to an infin-
ity of tools that it provides (debugger, IntelliSense, exten-
sions, Nsight, ...).

2.3 External libraries

• GLFW, Graphics Library Framework [10] - For pro-
viding a window and a surface to Vulkan.

• GLM, OpenGL Mathematics[2] - Provides essentials
data structures and functions for dealing with 3D
math.

• PCG, A Better Random Number Generator [9] - For
generating random numbers for initial light colors and
positions.

• stb image, a reading and writing images library [7]
- For loading external textures.

2.4 NVIDIA Nsight Graphics

NVIDIA Nsight Graphics [8] is a standalone developer
tool that enables you to debug, profile, and export frames
built with Direct3D (11, 12, DXR), Vulkan 1.2, OpenGL,
OpenVR, and the Oculus SDK. At the moment the Nsight
Graphics debugging tool it’s integrable on Visual Studio
through an apposite extension.
I used the framebuffer debugger during the implemen-
tation of the deferred rendering for checking if the state of
the auxiliary buffers was correct.

Figure 1: Frame Debugger from NVIDIA Nsight Graphics
(Visual Studio extension)

1

3 Scene

The scene it’s composed of three models of Vivi Orunitia
(a character from Final Fintasy) and a floor with a chess
pattern.

Figure 2: The scene

4 Implementation

4.1 First pipeline

4.1.1 Vertex Shader

This will receive the following external resources :

• The colors, normals, texels and position vectors (from
vertex input).

• An Uniform Buffer Object containing a struct
with the view matrix and the projection matrix.

• The model matrix as Push Costant (inside a struct).

Figure 3: Vertex input and UBO of the first pipeline vertex
shader

It calculates the correct position of the input vertices us-
ing the correct ordering of the projection, view and model
matrices, the result is stored inside the gl_Position vari-
able.
The texels (tex) and the colours (col) are directly passed to
the fragment shader. Even the positions (pos) are passed
to the fragment shader but they have to be converted to
world space with the model matrix first. A similar com-
putation happens for the normals (nrm) too, we need to

Figure 4: Computation of the first vertex shader

convert normals to world space, but we have to use a differ-
ent model matrix which is the transpose of the inverse
of the original model matrix.

4.1.2 Fragment Shader

It receives the data sent from the previous vertex shader
and the only external resource it’s a sampler2D for sam-
pling the texture images.

Figure 5: Fragment shader external resources and passed
variables

This fragment shader has been set up to save outputs in
three different offscreen framebuffers: positions, nor-
mals and colors.

Figure 6: Fragment shader saving the result in the MRT

4.2 Second pipeline

4.2.1 Vertex Shader

It generates the UV coordinates for sampling the textures
from the auxiliary buffers and passes it to the fragment
shader.
This is a trick for rendering a fullscreen quad by using a
big triangle that is bigger than the far plane (more efficient
since we are using just three vertices), then the portions of
a triangle that are out of screen boundaries will get clipped
(without bandwidth loss since the out of screen portions

2

Figure 7: Vertex shader of the second pipeline

of triangle won’t be sampled at all) [11]. The bitwise
manipulation operations are used to obtain three pair of
vertices (0,0), (2,0) and (0,2).
To do this we don’t want to pass any vertex in input, this
translates into passing an empty VertexInputState.
The number of vertices to be used will be subsequently
explained with the following function :

Listing 1: Drawing call for the second pipeline
vkCmdDraw(commandBuffer , 3 , 1 , 0 , 0) ;

4.2.2 Fragment Shader

The following shader will receive many external resources,
for clarity, I show them in a list.

• The MRT (as sampler2D since the content is a 2D
texture).

• The lights (as descriptor set).

• User input settings (as descriptor set)

• UV coordinates (from the vertex shader).

Figure 8: Fragment shader of the second pipeline

There is a macro that tells me the number of lights on
which I have to iterate, its value must coincide with its
copy on the application (used to define the lights).
Inside the main function, the first thing that occurs is the
retrieving of texels from the MRT.

Figure 9: Retrieving texels from MRT

Figure 10: Lighting computation

The lighting computation portion of the code, it’s substan-
tially a for loop which iterates over all the 20 lights and
compute the lighting model using the MRT data.
The first thing calculated is the lighting factor for the
diffuse light, i will need the normalized vector L which
goes from the fragment to the light source, then i compute
the dot product between the normal vector N (retrieved
from the normal map) and L. The result of this dot
product will explain to me how much the angle between
these two vectors is wide, then it is clamped between
the range [0, +∞], in this way it is possible to reuse the
output as a valuable lighting factor (by considering 0 the
negatives dot products, where the angle between vectors
it is greater of 90°).

The subsequent calculation is carried out for the reflected
radius using GLSL reflect with the L vector of opposite
sign and the N vector unit. Finally, the dot product
between the reflected vector R and the vector that goes
from the fragment to the origin is calculated (the one who
looks at the fragment). The same previous clamping is
performed, this means that the value will be 0 if the an-
gle between the person looking at the reflected beam is
greater than 90° (outside the field of view), instead, the
result of the dot product will reach the maximum value if
the vector of the chamber looking at the fragment and the
vector of the reflected ray coincide.

3

Ultimately the specular light is calculated based on the
light color, fragment color, and shininess (since you are
using a Blinn-Phong model [1]).
The fragment shader will output different fragments with
respect to the user input.

Figure 11: Switch output in the base of settings

The latest portion of the code is self-explanatory, it is just
a simple switch that changes the output between the MRT
and the deferred scene with lights.

Figure 12: Positions

5 Performance metrics

The resolution used for performance analysis it’s a
1280x760, the benchmark consists of measuring the av-
erage frames per second with a different number of lights.
The average FPS is not limited by the monitor Hz, this
is for having a more heterogeneous pool of samples.

Figure 13: Normals

Figure 14: Final result

The scene got executed 5 times with a different number
of lights: 5, 10, 20, 50, and 100. For each execution of
the sceen I took 10 different samples of frames (this was
implemented from code) and then averaged the samples
with another really simple parsing software that I made.

Figure 15: Function used for sampling the FPS

To make sure that the FPS calculated internally (and then
stored externally) was correct, I checked the correctness of
the values with the overlay provided by the Frame De-
bugger from Nsight Graphics.

4

Table 1: FPS results from the profiling

Number of Lights Avarage FPS

5 668.4

10 639.5

20 600.2

50 575.556

100 406

1000 57.5294

The drop in framerate was inevitable, but it is easy to de-
duce that the amount of FPS remains amply high, even in
the extreme case where 1000 lights were used (always tak-
ing into account that I used the overlay to achieve greater
data integrity, without the latter the performance would
increase by about ten FPS) the framerates are released at
an excellent value for the GPU on which the benchmark
was performed.

6 Conclusions

In conclusion, this has been a forging experience in terms
of acquiring knowledge regarding the new graphics API
from Khronos, but not only that, due to the verbosity
and complexity involved in writing the code a significant
amount of challenges during the implementation of this
long project which took four months. Not only that, it
was an educational experience in practical but also cultural
terms for exposure to more sophisticated rendering tech-
niques that involve the use of multiple graphics pipelines,
such as deferred rendering.

References

[1] Jim Blinn Bui Tuong Phong. Blinn–Phong
reflection model, https://doi.org/10.1145%
2F563858.563893.

[2] christophe lunarg. GLM, OpenGL Mathematics,
https://github.com/g-truc/glm.

[3] Khronos Group. OpenGL, Open Graphic Li-
brary, https://www.opengl.org/.

[4] Khronos Group. The triangle processor and nor-
mal vector shader: a VLSI system for high per-
formance graphics, https://doi.org/10.1145%
2F378456.378468.

[5] Khronos Group. Vulkan, Graphics Library
Framework, https://www.vulkan.org/.

[6] Microsoft. Visual Studio, https://visualstudio.
microsoft.com/it/.

[7] nothings. stb image library, https://github.
com/nothings/stb.

[8] NVIDIA. Nsight Graphics, https://developer.
nvidia.com/nsight-graphics.

[9] Melissa E. O’Neill. Pcg: A family of simple fast
space-efficient statistically good algorithms for ran-
dom number generation. Technical Report HMC-CS-
2014-0905, Harvey Mudd College, Claremont, CA,
September 2014.

[10] The GLFW Development Team. GLFW, Graphics
Library Framework, https://www.glfw.org/.

[11] The GLFW Development Team. Vulkan
tutorial on rendering a fullscreen
quad without buffers, https://www.
saschawillems.de/blog/2016/08/13/
vulkan-tutorial-on-rendering-a-fullscreen-quad-without-buffers/.

5

https://doi.org/10.1145%2F563858.563893
https://doi.org/10.1145%2F563858.563893
https://github.com/g-truc/glm
https://www.opengl.org/
https://doi.org/10.1145%2F378456.378468
https://doi.org/10.1145%2F378456.378468
https://www.vulkan.org/
https://visualstudio.microsoft.com/it/
https://visualstudio.microsoft.com/it/
https://github.com/nothings/stb
https://github.com/nothings/stb
https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-graphics
https://www.glfw.org/
https://www.saschawillems.de/blog/2016/08/13/vulkan-tutorial-on-rendering-a-fullscreen-quad-without-buffers/
https://www.saschawillems.de/blog/2016/08/13/vulkan-tutorial-on-rendering-a-fullscreen-quad-without-buffers/
https://www.saschawillems.de/blog/2016/08/13/vulkan-tutorial-on-rendering-a-fullscreen-quad-without-buffers/

	Introduction
	Development tools
	Vulkan
	Visual Studio 2019
	External libraries
	NVIDIA Nsight Graphics

	Scene
	Implementation
	First pipeline
	Vertex Shader
	Fragment Shader

	Second pipeline
	Vertex Shader
	Fragment Shader

	Performance metrics
	Conclusions
	Bibliografia

