
CUDA Ray Tracer: Implementation, Comparison, and Profiling
Manuel Pagliuca - 975169
December 13, 2022

Abstract

In this paper, I will illustrate how much is the Ray Tracing
algorithm highly scalable on the GPUs, through a comparison
with the host only implementation of the same code.

Everything started two years ago when I found out the field
of computer graphics with the ray tracing, this was possible
thanks to a really well-known online book called "Ray Tracing
in One Weekend"[6] from Peter Shirley

The aim of this paper is to illustrate briefly the algorithm and
to make a comparison between the CPU and the GPU imple-
mentation of the same ray tracer with the same scene.

1 Introduction

Currently, the algorithm is very well known due to the
newest hybrid implementations on the graphic pipelines
that wants to bring its peculiarities to the video games
industry.[2]

Anyway this feature it’s really difficult to achieve in real-
time graphics since it is a really expensive algorithm,
which allows us to obtain physically accurate images (in
this particular case we speak of path-tracing).

The algorithm was not recently conceived, the first idea
dates back to 1969 and finds its major use in offline ren-
dering of animated films.

The algorithm is intensive since it uses an image-
oriented rendering approach instead of using a graphic
pipeline, for this reason, the use of the GP-GPU
paradigm is a really good solution.

2 The algorithm

Ray Tracing is a 3D rendering algorithm that is based on
the computation of the paths followed by the light, in such
a way as to follow the rays through the interaction with the
surfaces. This technique is capable of simulating a variety
of optical effects such as reflection, refraction, diffraction,
and dispersion with a high degree of realism.

The concept of the algorithm itself is even older since it
derives in turn from the concept of the darkroom.

The algorithm works by tracing rays (or paths in the case
of path-tracing) that start from an imaginary point of
view called "eye" and cross one virtual screen (also called
frame, image-plane or sometimes sensor, referring to
the camera sensor).
Once you have crossed the image plane you reach the scene
containing 3D objects that will be described by mathemat-
ical models by the programmer (or visual artist through
intermediate tools). For each ray an intersection test is
performed for each subset of objects in the scene, in the
event that the test concludes with a positive result, the
calculation of the light entering the intersection point is
carried out, based on the type of material of the object
that is intersecting (lambertian, metallic, glass, ...), in the
end, all this information is combined and the color for the
single pixel is obtained.
Already only in the case of a simple Ray Tracer, the cal-
culations that occur for just a single pixel are too many,
the speech can be considerably expanded when it comes to
Path Tracing and therefore to Global Illumination, where
the amount of calculations for each pixel increases consid-
erably.
At the following link, there is a more explana-
tory image of the algorithm operation: https:
//upload.wikimedia.org/wikipedia/commons/9/
95/Ray_Tracing_Illustration_First_Bounce.png.

3 CUDA Implementation

The CUDA[5] implementation is a transcription of the Pe-
ter Shirley code explained in his book for the GPUs, an-
other resource that I also used is from Roger Allen which
made a post[1] on the NVIDIA Developer Blog about the
implementation of some chapters from "Ray tracing in one
weekend".
By the way, the abstract logic of the code stays the same,
anyway this wasn’t the first attempt to port my previ-

1

https://upload.wikimedia.org/wikipedia/commons/9/95/Ray_Tracing_Illustration_First_Bounce.png
https://upload.wikimedia.org/wikipedia/commons/9/95/Ray_Tracing_Illustration_First_Bounce.png
https://upload.wikimedia.org/wikipedia/commons/9/95/Ray_Tracing_Illustration_First_Bounce.png


ous Ray Tracer on GPU, I tried with OpenCL[3] from
Khronos. The problem with OpenCL is that doesn’t offer
all the new and recent features that CUDA has, they are
really helpful and great for this project.
Specifically, this project used:

• Unified Memory, for accessing the frame buffer di-
rectly from the CPU.

• cuRAND, for generating high-quality pseudo-
random numbers (used for achieving the MSAA).

• Dynamic Parallelism, for calling different kernels
during the rendering.

For obvious reasons, the grid used for implementing the
Ray Tracer is a bi-dimensional grid of bidimensional
blocks. The grid must fit the width and height of the
framebuffer (the resulting render), each thread block is
an 8x8 matrix of threads.
The general execution of the algorithm :

1. Setting up the size and number of samples to use by
user input.

2. Allocate the needed objects: framebuffer, random
states for all pixels, hittable list, world, camera.

3. Initialise the rendering (setting different seeds for each
pixel) with a kernel.

4. Launching the rendering kernel (and the timer).

5. Collecting the results from the frame buffer and sav-
ing them in PNG file format.

6. Free the used resources (and device reset).

Generally, the images are saved in PPM file format, but I
personally don’t like it and prefer using a more common
file format which is not lossy (so not JPEG) the PNG. This
was trivial to obtain thanks to the stb image library[4].
The render kernel, which will perform these operations
for all the pixels (this will also call other kernels thanks to
dynamic parallelism) :

1. Sending rays to a pixel (expressed in row-major or-
der) of the view, starting from the TLC (top-left cor-
ner). This operation occurs ns times, where ns is the
number of the random samples that will be used for
performing the MSAA.

(a) Calculating the u,v random offsets (they are be-
tween [0,1]) through the cuRAND Library (this
operation on the CPU sides needed an exter-
nal library to obtain a high quality of uniform
pseudo-random numbers).

(b) Use the offsets for generating rays that will sam-
ple (calling the color kernel) the neighbors of the
pixels.

(c) Sum all the colors of the pixels in one vector,
this will call the color kernel.

• Essentially the color kernel will scroll the
list of all the objects present in the world
and check if the object is hit by a ray (per-
forms the ray-sphere intersection). In that
case will perform the scattering of the light
in the base of his material, if there is no in-
tersection this means that the ray is missed,
so it will show a linear interpolation between
white and light blue (to make it look like the
sky).
This kernel in particular has a limitation im-
posed by a loop of 50 because the attenua-
tion was obtained recursively on the CPU
version. So the solution proposed by Roger
Allen was to make iterative to avoid reach-
ing the limitations of the hardware imposed
on the recursive calls.

2. Performs the average of ns samples on the pixel color
vector.

3. Save the colored pixel on the framebuffer unified
memory.

3.1 Spheres

The only objects which were implemented are the spheres
because the ray-sphere intersection is simpler to obtain
(and also reflection and refraction leads to better graphic
effects on curved surfaces) with vector math and to reduce
it to a second-grade equation (we will keep the first result
since it is what the eye will see).

4 Comparisons and Metrics

4.1 Comparison with CPU implementation

It may seem obvious who will be the winner, but I think
it is appropriate to make a comparison in order to better
have the distance between the two implementations.
We are rendering the same scene which consists of 8
spheres with different materials (metal, glass, lambertian)

2



whose properties will be made them perform different light
effects.
The GPU used is an NVDIA STRIX 1070 and the CPU
is an Intel Quad-Core i7-6700K @ 4.00GHz

Table 1: CPU vs GPU benchmarks with 10 samples.

Resolution CPU time (sec) GPU time (sec)

800x600 58.9532 0.0537
1280x720 110.9580 0.0825
1920x1080 248.112 0.174891

The comparison is pretty over there, of course, the GPU
would have won but the results are really shocking.
The GPU implementation in respect of the CPU imple-
mentation is 1097 times faster in the first benchmark and
1418 times with the 1920x1080 resolution.
Let’s see GPU-only benchmarks with different samples :

Table 2: GPU benchmarks with different samples.

Resolution Samples GPU time (sec)

800x600 10 0.0537
800x600 100 0.5110
800x600 500 2.4204

1280x720 10 0.0825
1280x720 100 0.7481
1280x720 500 3.6542

1920x1080 10 0.1749
1920x1080 100 1.6084
1920x1080 500 7.9574

4.2 Profiling

Using nvprof is possible to measure some technical met-
rics of the CUDA execution.
The metrics used :

• Occupancy (ratio of the average active warps per ac-
tive cycle to the maximum number of warps supported
on a multiprocessor)

• Number of overall instructions executed.

• Number of floating point operations.

• Number of double-digit operations.

• Number of integer operations.

• Device Memory Read Throughput.

• Device Memory Write Throughput.

• Instructions executed per cycle.

• Warp execution efficiency.

For the execution of nvprof the render proposed got an
800x600 resolution with 500 samples. The profiling tools
metrics are related only for the render kernel, since the
others are marginal in comparison.

4.3 Conclusions

In conclusion, even if the profiling results did not give the
best results for warp efficiency, we obtained amazing
results in terms of kernel execution speed.
The CUDA API together with the libraries proved to be
extremely comfortable and easy to use in the implementa-
tion of this project, avoiding having to resort to external
convenient libraries (in the CPU version the PCG library
was used for the generation of random numbers).
So it is fair to say that the use of the GP-GPU paradigm
is perfectly suited to the problem of Ray racing thanks to
the possibility of generating ad hoc two-dimensional grids
for processing images in parallel.

References

[1] Roger Allen. Accellerated Ray Tracing in One
Weekend in CUDA, https://developer.nvidia.
com/blog/accelerated-ray-tracing-cuda/, Nove-
mer 5th, 2018.

[2] Microsoft Corporation. DirectX Raytrac-
ing, https://en.wikipedia.org/wiki/DirectX_
Raytracing, October 10th, 2018.

[3] Khronos Group. OpenCL, open computing language,
December 8th, 2008.

[4] nothings. stb image library, https://github.com/
nothings/stb.

[5] NVDIA. CUDA, Compute Unified De-
vice Architecture, https://developer.nvidia.
com/cuda-zone, June 23th, 2007.

[6] Peter Shirley. Ray Tracing in One Week-
end, https: // raytracing. github. io/ books/
RayTracingInOneWeekend. html . 2018.

3

https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda/
https://developer.nvidia.com/blog/accelerated-ray-tracing-cuda/
https://en.wikipedia.org/wiki/DirectX_Raytracing
https://en.wikipedia.org/wiki/DirectX_Raytracing
https://github.com/nothings/stb
https://github.com/nothings/stb
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingInOneWeekend.html

	Introduction
	The algorithm
	CUDA Implementation
	Spheres

	Comparisons and Metrics
	Comparison with CPU implementation
	Profiling
	Conclusions

	Bibliografia

