
L-system for generation of trees in Unity

Manuel Pagliuca - 975169
October 19, 2022

Abstract

Modern machines have made it possible to break through hard-
ware limitations that stood in the way of older generations of
video games. The use of procedural content generation has been
widely used in the video game industry for the creation of pseudo-
randomly generated assets, such as maps, levels, characters and
other objects that make the game experience unique. The goal
of this project is to implement an L-system for the generation of
pseudo-random trees. Basic knowledge about language theory is
essential to implement the system to generate and manage the
language that will describe the trees.

The paper will begin by introducing L-systems, the objectives
of the project, and the development tools used. This will be
followed by a discussion of the technical implementation of the
project. The result obtained is an application capable of producing
fairly realistic results in a smooth way (considering a limited
number of iterations/recursion levels), offering four different bases
for tree generation (one for roots) with the possibility to make
changes to the production rules in real-time.

1 INTRODUCTION

Lindenmayer’s system is a parallel system of rewrite (in math-
ematics, the operation of "rewriting" consists in the substitu-
tion of an object in place of a part of another object, accord-
ing to a precise formal rule) and a type of formal grammar.
It was introduced and developed by Aristid Lindenmayer in
1968 [3], a Hungarian theoretical biologist and botanist who
used this system to describe the behavior of plant cells and to
model plant growth processes (fig. 1). Because of its features,
like its recursive nature, L-systems are widely used for fractal
generation (as the recursion leads to the self-similarity).

Figure 1: An example of a tree generated with an L-system
using (and reusing) segments. Its fractal structure (self-
similarity) can be easily seen there.

L-systems grammars are very similar to the semi-Thue gram-
mar, they are commonly defined as a tuple:

G = (V ,ω,P )

where :

• V is a set of symbols (alphabet) containing both the el-
ements that can be replaced and those which cannot be
replaced (terminals or constants).

• ω is the axiom which is a string of one or more symbols
that defines the initial state of the system.

• P is the set of production rules defining the way vari-
ables can be replaced with combinations of constants
and other variables.

The rules of the L-system grammar are applied iteratively
starting from the initial state. As many rules as possible
are applied simultaneously, per iteration. If the production
rules were to be applied only one at a time (in a sequential
manner), one would quite simply generate a language, rather
than an L-system (L-systems are strict subsets of languages).

L-system realized in this project consists of a single produc-
tion rule and an axiom X .

X → Pr oducti on Rul e

In addition to the theoretical basis to generate our L-system,
we need a mechanism to utilize the generated string in
geometric structures. Then we need symbols belonging
to the string to act as references for procedures that draw
graphics on the screen (similar to turtle/vector graphics).

The goal of this project is to realize a context-free and
deterministic L-system for the generation of pseudo-random
trees [8], in which the direction and the angle of branches
(and roots) are not constant but randomly sampled from
distribution in order to obtain a realistic effect (fig. 2).

Figure 2: Realistic L-system trees.

1



1.1 THE TREE STRUCTURE

The desired tree must be conceptually like the one depicted
(fig.3). Therefore it must have branches, leaves and roots. In
the project, several production rule models will be provided
for branches (these will allow different geometric develop-
ments of the trees) and for roots.

Figure 3: Tree concept.

2 DEVELOPMENT TOOLS

To implement the project, the following tools were used :

• Game engine, Unity 2019.4.13f1 [10]

• IDE (Integrated Development Environment) Visual Stu-
dio 2019 [7], since the debugger was very well integrated
with the Unity engine.

• Programming language, C# [2].

• VCS (Version Control Systen), Git [4] & GitHub [6].

In addition to these tools, online resources such as Wikipedia
[1], slides from the course itself and the online book "The Al-
gorithmic Beauty of Plants" [9].

3 UNITY IMPLEMENTATION

3.1 PROJECT STRUCTURE

The project is set in a bare scene containing only a terrain
manually created using the modeling tools provided by
Unity, to which a simple texture has been applied (the origin
of the assets is mentioned at the end of this section).

There are four main C# scripts in the project, each script will
be discussed in a separate subsection. They have been built
respecting the "Single Responsibility Principle" (SRP, where
the ’S’ from the SOLID [5] acronym). The scripts and their
respective tasks are :

• CameraMovement.cs, deals with the movements of the
player within the scene.

• LSystemGenerator.cs, deals with the graphical generation
of the tree, using the derivator and the parser.

• Derivator.cs, takes care of deriving the initial model for
the specified number of iterations.

• Parser.cs, is responsible for parsing the derived string.

3.2 MAIN OBJECTS

The objects present in the scene are :

• Main camera

• Directional light

• Terrain

• Origin

With the exception of the Origin object, the others are of mi-
nor relevance to the purpose of the project. The Origin is
the point from which the tree will be generated upward at
first (branches) and then downward (roots). The three main
scripts for generating the tree are applied to this object (LSys-
temGenerator.cs, Derivator.cs and Parser.cs).

Figure 4: Scripts attached to the "Origin" object.

The "Main Camera" object will have the CameraMovement.cs
script attached to handle scene navigation.

3.3 CAMERA MOVEMENT

This script will not be discussed in detail as it is not relevant
to the scope of the project, but it needs to be explained as it
provides convenient functionality for players in running the
application. The movements provided by the script are :

• Classic first-person movements with the W, A, S and D
keys.

• The CTRL key is used to move up vertically (on the posi-
tive Z axis).

• The spacebar key is used to move down vertically (on the
negative Z axis).

2



• The SHIFT key, when pressed in combination with the
W, A, S and D keys, provides acceleration of movement
in the specified direction.

3.4 DERIVATOR

This class is used by the L-system generator itself (LSys-
temGenerator.cs), which will take care of calling the main
"Derive()" (listing 1) method providing the desired number
of iterations as input. There is no control over this number
by the Derivator.cs class.

The method consists of two nested for loops, the first
one iterates for a number of times equal to the variable
"iterations", and the second one iterates on each character
of the string provided as input.

Initially the variable "derivedString" corresponds to the
axiom symbol, this is set through the "SetAxiomAndRules()"
setter of the derivator class, which takes care of passing the
axiom and the production rules.

Listing 1: Derive() method from Derivator.cs

public string Derive(int iterations)
{

StringBuilder buffer = new
StringBuilder ();

for (int i = 0; i < iterations; i++)
{

foreach (char c in derivedString)
buffer
.Append(rules.ContainsKey(c)?
rules[c] : c.ToString ());

derivedString =
buffer.ToString ();

buffer = new StringBuilder ();
}

return derivedString;
}

3.4.1 TIME COMPLEXITY

For each iteration of the outer loop, we will replace the axiom
X with the respective production rule, proceeding in this way
we will obtain an exponential expansion of the initial string.
Considering the following production rule :

X → F [−X ][+X ]

During the computation of the method (listing 1), the
production rules, represented by the variable "rules"
(dictionary/hash-table type) will contain the previously
exposed association. Inside the variable "derivedString"
there will be the axiom X . Then, for a number of times equal
to "iterations" whenever it will encounter the axiom, it will

substitute with the rule. The complexity of this algorithm
will depend on the number of iterations of the external cycle
times the number of axioms per iteration (which in turn
depends on the selected model).

O(#outer I ter ati ons ·#axi omsPer I ter ati ons)

We can see that the number of axioms (the base) as well as the
instruction in the nested for loop will increase exponentially.
This is because at each iteration the number of axioms will
be the next power of the number of axioms at the previous
iteration (check the table 1).

Although in this algorithm the number of iterations is
fixed, the logic is the same as in the recursive algorithm for
computing the Fibonacci sequence with the difference, only
that it is written with two for loops, where the number of
recursive calls (branches) is equal to the number of axioms in
the production rule (in the example we are considering there
are two F [−X ][+X ]).

Table 1: Example of a few iterations considering the previous
production rule X → F [−X ][+X ]

Iteration Derived String

0 X

1 F[-X][+X]

2 F[-F[-X][+X]][+F[-X][+X]]

3
F[-F[-F[-X][+X]][+F[-X][+X]

]][+F[-F[-X][+X]][+F[-X][+X]]]

4 ...

For each outer iteration, the number of inner iterations will
grow exponentially with respect to the base, in this case, the
base is 2 (there are two X in the production rule), so the num-
ber of instructions would be equal to :

20 +21 +22 + ...+2n

where n is the number of selected iterations (which is the
depth of the call tree), then it would be enough to simply ap-
ply the sum of powers of 2 to know the number of instructions
executed in the loop, which will be 2n −1. The overall com-
plexity of the two nested for loops can be described as :

O
(
2n −1

)=O
(
2n)

However, two things should be considered :

• the number of iterations of the inner loop depends on,
but is not equal to, the number of axioms in the string.
The inner for loop iterates over all characters in the
string in addition to the axioms (if we considered only
the number of axioms we are making underestimate of
time complexity).

• the input n (the number of outer iterations) in this case
is not a number that can grow much since it is limited
internally by a range of iterations between [1,6] (fig. 10).

3



Thus it is an iterative algorithm with a time complexity
that can vary from the best case of about ≈ O (1) (linear
complexity), to the worst case of about ≈ O

(
26

)
(sixfold

complexity), both underestimate.

We can describe the complexity more generally using
the number of initial axioms present within the production
rule and the number of outer iterations (i.e. n).

O
(
#i ni t i al Axi oms#outer I ter ati ons

)
3.5 PARSER

The main purpose of the parser (defined in the Parser.cs
script) is to take the derived string as input and read the sym-
bols within it. Based on the detected symbols it will delegate
the operations to be performed by the generator (LSystem-
Generator.cs).

Table 2: Table of symbols and the operations that are per-
formed on them.

Symbol Operation

X
Do nothing

(the axiom is not useful for the parser).

F Generate a branch object.

R Generate a root object.

L Generate a leaf object.

∗
Rotation by a random angle

of one of the following
verses: backward, left, right, and forward

(also randomly chosen).

[

Push the transforms data.
Saves the information about

the position, length, and width
of branches and roots.

]

Pop the transforms data.
Retrieve the information about
the position, length, and width

of branches and roots.

As with the Derivator.cs class, the Parser.cs class is used by the
generator as an independent logical unit (always according to
the SRP [5]). It is used within the generator code by passing a
reference to the generator itself and the derived string (both
through setters).

3.6 L-SYSTEM GENERATOR

The LSystemGenerator.cs is the main class that deals with the
management of the system’s states (e.g., position of branches
and roots), and its graphical representation.

The script itself is assigned (together with Derivator.cs
and Parser.cs) to the Origin game object. This object will
be moved around in the 3D world in order to generate
the graphical components of the tree (branches, roots and
leaves), all the transform operations will occur on this object.
The initial position of the Origin object in the 3D space is set
as 〈0,0,10〉.

The rotation of a random angle of the Origin object in
one of 4 directions (also random) is done based on a seed
made explicit in the inspector (fig. 10). Although a random
choice of direction and angle of branches (or roots) occurs,
this L- system is not stochastic, since such a system would
have to place a probability distribution on the choice of the
rule to be used (at each iteration). Instead, in this imple-
mentation, the pseudo-randomness is contained within the
operation corresponding to the symbol ’∗’.

N.B.: While using the "free edit" mode, if a symbol not
covered by the grammar is inserted, an exception will be
thrown.

3.6.1 DATA STRUCTURES

There are several data structures for system management and
implementation; below is a list with a brief description of
their purposes.

• A dictionary that encapsulates the basic patterns (pro-
duction rules).

• Different variables which are the main parameters of
the tree generation. Since they are defined as serialized
fields, they allow the user to manage the tree generation
directly from the inspector panel (the user can change
the variable values while the application is running).

• A struct (called BufferedData) used to perform buffer-
ing of the variables describing the current tree genera-
tion. This structure makes it possible to check whether
the user has made changes to the current variables (via
the inspector panel) by comparing the current values of
the variables with those that were buffered at the end of
the previous generation (this method provides a way to
know that a new tree needs to be generated).

• A stack to handle the different states branches and roots
can assume during generation. Each branch (or root)
has its own transform, lengths, and thicknesses that vary
as the tree grows.

• Two dictionaries containing the rules for the tree and
root.

• A Derivator.

• A Parser.

• Two lists for collecting branch and root objects, respec-
tively.

4



• Several general-purpose variables and constants needed
for implementation are not shown because they are ir-
relevant to the design illustration (e.g., two game objects
enclosing all branch and root objects as children, tree
growth limits, ...).

– It is worth highlighting the two GameObject vari-
ables in particular, as they will be the parents of all
objects belonging to the branch and root lists (re-
spectively), behaving like "containers" (fig. 5).

Figure 5: The node "container" father of all branches, and the
terminal branches in turn are the fathers of the leaves.

3.6.2 AWAKE()

The first function that will be loaded will be the Awake() func-
tion, it will just allocate the necessary data structures like the
derivator, parser, and "container" nodes. After that the Start()
function will be called, which will sequentially :

• buffer the data of the actual generated tree (null data if
the tree has not yet been generated).

• call the method for generating the upper branches.

• reset the position to the origin.

• call the method for generating the roots.

• resets the position again to the origin.

• assigns the game objects for branches and roots to the
container nodes.

3.6.3 UPDATE()

Inside the Update() method two important methods are
implemented, they are the tree regeneration (when a change
is recognized) and the free real-time editing of the tree
production rule.

The tree regeneration is done by checking for differences
between the buffered data in the generated tree with the
values of the current inspector variables. If any differences
are detected, the following operations will take place :

• Destruction of the old tree.

• Cleaning data structures containing branch and root
nodes.

• Reset of Origin position to 〈0,0,10〉.
• Call of the Start() method (generation of a new complete

tree, with branches and roots).

The second feature is implemented using a boolean serial-
ized field as a flag (fig. 6), when this is enabled it will be possi-
ble to modify the production rule via keyboard, otherwise any
change will be reset to the previously selected default model.

Figure 6: The boolean flag (from the inspector panel from 10)
that enables the editing of the tree rule (Inspector view of the
Origin object).

3.6.4 BRANCHES AND ROOTS GENERATION

The generation of the tree is done by calling two procedures
(GenerateBranches() and GenerateRoots()) for the generation
of all branches and all roots. These two procedures are
very similar, the first will be described in a more detailed
way, while for the second, only the major differences will be
highlighted.

The generation procedures call the derivative by setting
the production rules (rules of branches are different from
those of roots). Once set, this is used to derive the string, after
the set number of iterations (modifiable by the inspector).
The obtained string will be provided as input to the parser,
which will start the parsing process for drawing the graphics.
The generation methods end here, the difference with the
method that generates roots is that the number of iterations
is limited to a maximum of four (MAX_ROOTS_ITERATIONS).

More in detail, one of the most important functions of-
fered by LSystemGenerator.cs class (but invoked by the
parser) is the one to generate a single branch (called Gen-
erateBranch(), for the root it is called GenerateRoot()). The
branch itself (and also the root object) is a LineRenderer (fig.
7) object, two 3D coordinates are required to set the start
and end points of the branch. It is also possible to set the
thickness at specific points on the object.

Figure 7: LineRenderer object that represents a branch.

When this method is called, what happens is that the Ori-
gin object is translated upwards by an amount equal to the
length of the branch (temporarily saving the previous posi-
tion in a variable). Then a branch object is instantiated, and
the two positions of the LineRenderer are set with the tem-
porary saved (start point) and translated position (endpoint).

5



The thickness is managed with a method called SetSegmen-
tWidth() (which is also used within root generation). At the
end of the procedure, the newly generated branch object is
added to the list of branches.

3.7 PUSH&POP

The Push() and Pop() operations allow you to save and
retrieve the states of the branches (and roots) by means of
a LIFO (Last In First Out) paradigm. A segment state (since
the procedure and the stack is the same for both branches
and roots) consists of its transform, length, and thickness
(or width, since the LineRenderer is actually a 2D). These
features are enclosed in a special struct (called State), and the
objects instantiated by this struct will be pushed or popped
into the appropriate stack.

During a Push() operation the state data is saved using
the following methodology :

• The transform is the position and rotation of the seg-
ment.

• The length of the segment is decreased by a constant
then saved. This ensures that when the next segment
will be generated it will peek from the stack a shorter
length.

• The width (or thickness) of the segment will tend to de-
crease naturally as the tree grows, so the starting point
of the segment will be equal to the endpoint of the pre-
vious segment (state) and the endpoint will be equal to
the starting point decreased by a constant.
Decreasing the thickness is done in a predefined man-
ner, by adding the decremented thickness to the inside
of the stack and reusing the value at the time of segment
generation (via Peek()).

The Pop() procedure pops the top state in the stack, and the
Origin transform is reset when the operation is performed,
while the length and width are just lost (since they are not
needed anymore). Using this method of recording states, the
tree will be built evenly by thinning and shortening (in a con-
ical manner) the branches or roots (fig. 8).

Figure 8: At the end of the tree, the branch thickness tends
to decrease gradually and tends to sharpen (by a factor that
depends on the number of iterations and the constants set).

3.7.1 ROOTS

The generation of roots is practically identical to that of
branches, the only differences are that they do not have
leaves, they develop in the opposite direction and the pro-
duction rule (of the predefined model) is implemented dif-
ferently.

Figure 9: Roots seen from the scene window with the "Roots"
parent node selected.

Furthermore, in the branch generation, there is a fixed base
of two consecutive straight branches (inserted at the head
through two F symbols), this is because usually trees grow
a trunk before they start branching, while roots do not.

6



3.7.2 INSPECTOR

Figure 10: Inspector panel of LSystemGenerator.cs

Figure 10 shows the inspector panel for the LSystemGenera-
tor.cs script, which is attached to the "Origin" object. In this
panel, it is possible to :

• Tweak the random seed.

• Display (and tweak) the branch production rule.

• Display (and tweak) the root production rule.

• Enable/disable the free editing of the branches and roots
production rule.

• Select a predefined production rule for branches.

• Select a predefined production rule for roots.

• Set the number of iterations to apply on the derivator
(the range of iterations is [1,6]).

• Set the initial length of branches and roots.

• Select the GameObjects to be attached for generation.

4 EXTERNAL RESOURCES

From the package manager (Unity asset store) :

• Bark Textures (PBR) - Volume One

• Terrain Textures Pack Free

• Hand Painted Seamless Wood Texture Vol - 6

As an external resource it was possible to find a two-
dimensional image of the leaves (Leaf.png), the origin of the
author is unknown.

5 POSSIBLE IMPROVEMENTS

A list of possible improvements to the current project and
possible expansions :

• Tree growth conditioned by the external environment.
For example, what would happen if boulders were
present under the roots or if an occlusion was present
above the tree itself?

– Handle occlusions.

– Tree reactive to the seasons and weather.

– Different development of the roots in the presence
or absence of water and nutrients underground.

• Add new production rules for branches.

• Add new production rules for roots (create predefined
sets).

6 CONCLUSION

L-systems are systems that have enabled the creation of pro-
cedural content, they have had a major impact on realism in
graphical applications such as video games. This great influ-
ence is probably due to the great diversity and realism that
they allow because at each execution of the application you
can get a different result from a previous state. This charac-
teristic allows the creation of geometric structures that seem
more organic, this approach is highly preferable with respect
to manually constructing assets, which are often limited in
scope and variety due to time, budget, and memory con-
straints.

Figure 11: One possible end result.

The generation of trees is just one of the many applications
of L-systems, other possible applications in the context of
open-world video games include the generation of railway
networks, cities, worlds, and galaxies.

A possible drawback in the use of L-systems could be
given by the computational costs, as the time efficiency ends
up being highly dependent on the size of the system. For
example, the pseudo-random procedural generation of an
entire railway network of a country might take a consider-
able amount of time on a moderately powerful consumer
machine. Considering the developed application, it can
be seen that changing a parameter initiates the complete
regeneration of the tree, which approximately performs a
number of operations equal to the number of symbols in the
derived string (not counting axioms). However, this problem
can be circumvented when it comes to generating large

7

https://assetstore.unity.com/packages/2d/textures-materials/nature/bark-textures-pbr-volume-one-71019
https://assetstore.unity.com/packages/2d/textures-materials/nature/terrain-textures-pack-free-139542
https://assetstore.unity.com/packages/2d/textures-materials/wood/hand-painted-seamless-wood-texture-vol-6-162145


worlds or systems since they usually have to be generated
only once, so introducing a loading phase at the application
startup solves the problem without impacting the game
experience.

REFERENCES

[1] Community. L-system, https://en.wikipedia.org/
wiki/L-system.

[2] Anders Hejlsberg. C# programming language documen-
tation, https://docs.microsoft.com/it-it/dotnet/
csharp/.

[3] Aristid Lindenmayer. LATEX: Mathematical Models for
Cellular Interactions in Development. I and II. Journal
of Theoretical Biology, Department of Biology, Queens
College, 23 August 1967. Available at https://doi.org/
10.1016/0022-5193(68)90079-9.

[4] Junio Hamano Linus Torvalds. Git, https://git-scm.
com/.

[5] R.C. Martin. Clean Architecture: A Craftsman’s Guide to
Software Structure and Design. Robert C. Martin Series.
Pearson Education, 2017.

[6] Microsoft. Github, https://github.com/.

[7] Microsoft. Visual studio, https://visualstudio.
microsoft.com/it/.

[8] Manuel Pagliuca. L-system project repository , https:
//github.com/manuelpagliuca/l-system.

[9] Przemyslaw Prusinkiewicz and Aristid Lindenmayer.
The algorithmic beauty of plants. Endeavour, 1997.

[10] Unity. Unity, https://unity.com/.

8

https://en.wikipedia.org/wiki/L-system
https://en.wikipedia.org/wiki/L-system
https://docs.microsoft.com/it-it/dotnet/csharp/
https://docs.microsoft.com/it-it/dotnet/csharp/
https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1016/0022-5193(68)90079-9
https://git-scm.com/
https://git-scm.com/
https://github.com/
https://visualstudio.microsoft.com/it/
https://visualstudio.microsoft.com/it/
https://github.com/manuelpagliuca/l-system 
https://github.com/manuelpagliuca/l-system 
https://unity.com/

	Introduction
	The tree structure

	Development tools
	Unity implementation
	Project structure
	Main objects
	Camera movement
	Derivator
	Time complexity

	Parser
	L-System Generator
	Data structures
	Awake()
	Update()
	Branches and roots generation

	Push&Pop
	Roots
	Inspector


	External resources
	Possible improvements
	Conclusion
	Bibliografia

