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Chapter 1

Introduction

The evolution of 3D computer graphics has led to a continuous escalation in the
intricacy of models, thereby necessitating technologies that can ensure judicious
resource utilization. This imperative arises from the need to circumvent resource
overconsumption. This thesis is driven by the goal of undertaking an empirical
exploration into the potential efficacy of new data structures capable of adeptly
representing 3D polygonal surfaces with extraordinary geometric resolutions. The
focus is on enabling multi-resolution rendering on GPUs, a context demanding
both efficiency and performance.

1.1 Motivations

In the realm of geometry processing, the pursuit of an optimal data struc-
ture capable of enhancing extreme geometric precision without commensurately
inflating memory utilization, specifically video RAM, and computational overhead,
has been a prominent objective. This thesis is centered on the conceptualization
and construction of a variant data structure termed ”anisotropic µ-mesh” to the
already existing one ”µ-mesh” by implementing a different subdivision scheme.
These data structures receive two meshes of the same model at low and high
polygonal resolution, respectively. Starting from the low-resolution one, they are
able to approximate the second one through an appropriate vertex displace-
ment performed on an intermediate subdivided mesh of the low-resolution model.
The overarching aim is to realize the aforementioned goal of markedly heighten-
ing the geometric accuracy of vertex displacements and enabling multi-resolution
rendering while reducing the memory allocation footprint.
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1.2 Context of the study

Geometry processing, is a research field that utilizes applied mathematics con-
cepts to design algorithms for acquiring, reconstructing, and analyzing 3D models.
It plays a critical role in various domains like computer graphics, virtual reality,
medical imaging, and robotics. With the increasing demand for 3D content, ef-
ficient manipulation of geometric data becomes essential. Geometry processing
researchers employ advanced mathematical techniques, including differential ge-
ometry, optimization, and numerical methods, to address challenges associated
with complex 3D structures represented as meshes. These challenges involve tasks
like surface reconstruction, mesh denoising, simplification, parameterization, shape
correspondence, and deformation. By developing robust algorithms and innova-
tive methodologies, geometry processing drives advancements in 3D modeling and
analysis, benefiting diverse fields and industries.

1.3 Objectives and contributions

The central aim of this thesis is to establish the viability of an alternative sub-
division scheme as a functional counterpart to the established µ-mesh scheme
from the paper ”Micro-Mesh Construction” [Maggiordomo et al., 2023]. The µ-
mesh scheme utilizes two distinct input meshes of the same model: a base mesh
characterized by relatively low polygonal resolution and a target mesh featuring
significantly higher polygonal complexity. Through a thorough investigation, this
thesis seeks to demonstrate the applicability and effectiveness of the proposed al-
ternative scheme. The µ-mesh scheme, with its unique methodology, subdivides
the base mesh using a construction algorithm, augmenting the geometrical struc-
tures within the original base mesh to introduce new vertices (”µ-vertices”) and
faces (”µ-faces”), generating the subdivided mesh. These augmented structures
play a key role in computing displacement information towards the target mesh.

Consequently, the µ-mesh scheme achieves the creation of a high-fidelity rep-
resentation of the target, originating from a low-resolution version of the same
model. This capability holds significant implications for graphical applications
by optimizing memory usage and enabling real-time management of various lev-
els of detail, without the need for generating different resolution meshes of the
same model. This, in turn, effectively mitigates the undesirable ”popping” effect
commonly observed during transitions between detail levels.

In contrast, this thesis explores an alternative partitioning scheme, known as
the anisotropic scheme (”anisotropic µ-mesh”). The design of the new subdivision
scheme aims to provide control of the anisotropy of base meshes, that is, the
handling of shortened and elongated faces (Fig. 7b) during the subdivision. The
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new scheme differs from the classical scheme in that the latter does not control
anisotropy and favors base meshes with equilateral faces.

This means that in order to achieve a uniform mesh subdivision, with the
classical method one must use a mesh with faces as equilateral as possible. Imposes
a preprocessing step to create base meshes with equilateral faces, a nontrivial and
time-consuming goal to achieve. Controlling anisotropy allows one to start from
less-than-perfect meshes and correct them during subdivision in order to create
more equilateral triangles in the subdivided mesh (yellow colored portion) and
as a consequence a better displacement (green colored portion).

The primary focus of this thesis is to conduct an exhaustive comparative anal-
ysis (Chapter 6) to rigorously evaluate the error between the two subdivision
schemes. This analysis aims to establish the feasibility of adopting the anisotropic
µ-mesh as a valid alternative to the µ-mesh scheme, considering its potential ad-
vantages.

1.4 Overview

The thesis follows an organized format, consisting of sequential chapters that sys-
tematically delve into various aspects of the research and implementation of the
data structure. The following bulleted list describes the chapters that will be
addressed throughout the thesis:

• Chapter 1, Introduction, review of the contemporary state-of-the-art
technologies similar to the one under study, and introduces the field of
research, establishing the basis for understanding the context and central
significance of the problem addressed in the thesis.

• Chapter 2, State of the art, detailed exposition of the data structure cur-
rently available in the state of the art, elucidating the intricate methodology
behind the construction of the µ-meshes and outlining the salient processes
inherent in its construction and function.

• Chapter 3, Micro-Mesh: current schema, before the implementation
of the new schema, it is necessary to re-implement the current schema in the
project to make the comparison later. To make the structure of the µ-meshes
clearer to the reader, the terminology, partitioning scheme, and objectives of
the data structure are discussed extensively in this chapter.

• Chapter 4, Anisotropic Micro-Mesh: a new proposal, details the ter-
minology, construction design, and implementation steps, intrinsic features,
and challenges of the anisotropic subdivision scheme construction process.
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• Chapter 5, Methodology, description of project structural composition,
graphical user interface, algorithmic optimizations, and all those components
included in the development environment that enabled the realization of this
project. It will act much like a user’s manual guiding the use of the various
programs involved in the project.

• Chapter 6, Empirical analysis, empirical comparison between the two
subdivision schemes. This comparison is executed through the utilization of
three different comparison metrics, which effectively showcase the relative
performance of the new scheme to the other.

• Chapter 7, Conclusions, zenith of the thesis, this chapter formulates
definitive conclusions concerning the efficacy and efficiency of the devised
data structure in fulfilling the objectives elucidated at the commencement of
the research. The thesis thus furnishes a coherent and carefully conducted
analysis of the subject matter, thereby delivering profound insights and con-
tributing significantly to the domain of study.

7



Chapter 2

State of the art

Micro-Meshes are a new structured graphics primitive supporting a large in-
crease in geometric fidelity, without commensurate memory and run-time process-
ing costs, consisting of a base mesh enriched by a displacement map.

A new generation of GPUs supports this structure with native hardware µ-
mesh ray-tracing, that leverages a self-bounding, compressed displacement map-
ping scheme to achieve these efficiencies.

The approach could be considered as a particular type of remeshing algo-
rithm, which specifically produces a high-quality subdivided base mesh, along with
a displacement map, which can be consumed directly by GPUs. This offers BVH
(Bounding Volume Hierarchy) savings and good tracing performance, such a com-
bination lowers the barrier of rendering highly detailed geometries in interactive
and real-time graphics applications.

This process of subdividing the mesh into a more complex geometric scheme
and extracting displacements concerning the target mesh will serve as the founda-
tion for the study of the anisotropic variant scheme.

2.1 Remeshing and mesh simplification

Remeshing [Khan et al., 2022] and mesh simplification [Luebke, 2001] are two
kinds of techniques used in the field of computer graphics to manipulate 3D polyg-
onal networks, commonly called meshes.
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(a) Original (b) Remeshed

Figure 1: Comparison of original mesh topology and the remeshed version.

The first technique pertains to the process of reconstructing or reconfiguring a
mesh to enhance its quality or modify its topology. This approach is frequently
employed to eliminate irregular or undesired attributes from a mesh, enhance the
distribution of polygons, or adjust polygon density across different regions of the
mesh.

In the model [FRKN, 2023] depicted in Figure 1b a specific type of remeshing
called ”Isotropic Explicit Remeshing” [Hoppe et al., 1993] occurred. This special
type of remeshing repeatedly applies edge flip, collapse, relax, and refine operations
to regularize the size and aspect ratio of the triangular meshing (trying to achieve
more isotropic triangles).

Remeshing can also serve to transform a mesh with intricate topology into a
simpler counterpart, thereby facilitating subsequent processing or animation. This
procedure addresses the challenge of attaining an improved discrete representation
of the underlying surface within a 3D mesh.
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(a) Original (1,500,000 faces) (b) Decimated (7,500 faces)

Figure 2: Comparison of original mesh and the decimated one through.

Mesh simplification, as the term implies, denotes the procedure of diminishing
the intricacy of a mesh while retaining its principal attributes. This methodology
is frequently employed to curtail the count of polygons within a mesh, all the while
upholding its visual essence.

Mesh simplification finds considerable utility in real-time applications, partic-
ularly in video games, where complex 3D models require simplified versions for
less-performing hardware.

2.2 Displacement mapping

Displacement mapping [Cook, 1984] is a computer graphics technique, which be-
longs to the family of texture mapping techniques. It employs a texture or
height map to induce changes in the geometric positions of mesh points, aligning
them with the corresponding points on the textured surface.

While displacement is commonly applied along the local normal to the surface,
it’s important to note that this is not a strict rule. In fact, the technique exhibits
various implementations depending on the specific context.
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The term ”mapping” in this technique alludes to the use of a texture map for
modulating the strength of displacement, with the displacement direction typically
following the local surface normal.

In contemporary computer graphics, many rendering engines support pro-
grammable shaders, enabling the creation of high-quality procedural textures
and patterns at arbitrarily high frequencies. Consequently, the use of the term
”mapping” becomes debatable, as it no longer involves the use of a traditional
texture map.

The term displacement is used to refer to a super concept that also includes
displacement based on a texture map. The generation of these displacement values,
coupled with their storage in a texture image, can be likened to a form of texture
baking [Cignoni et al., 1999].

The displacement values themselves can manifest as either vector or scalar
data. While scalar data offer greater computational efficiency, they necessitate the
development of intricate problem-solving strategies. Two types of displacement
mapping can be discerned:

• Geometric displacement acts directly on polygon mesh points, this type
of displacement requires a high level of tessellation of the mesh to produce
good results, thus has the disadvantage of producing very heavy and difficult-
to-manage models.

• Micro-displacement it automatically generates a substantial number of
small triangular faces (even many millions) and is capable of producing highly
detailed models. The distinctive and significant advantage of this system lies
in the fact that model tessellation occurs exclusively during rendering, with-
out altering the fundamental geometry, allowing it to remain straightforward.

2.3 Level of detail

In computer graphics, level of detail (LOD) refers to the practice of represent-
ing objects or data differently depending on their distance from the observer or
the context in which they are used. The LOD can be decreased as the model
moves away from the viewer or according to other metrics such as object rele-
vance, viewpoint-relative speed, or position.

LOD is an optimization technique for increasing the efficiency of rendering by
decreasing the workload on the graphic pipeline, and resource (such as computing
power or bandwidth), and enhancing user experience by ensuring that the objects
or data being displayed are adequately detailed only when necessary. Real-world
applications usually employ specialized methods tailored to the information being
rendered.
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Depending on the context, two main methods are used:

• Discrete Levels of Detail (DLOD), involves creating multiple, discrete
versions of the original geometry with decreased levels of geometric detail
at run-time, the fully detailed models are substituted with the models of
reduced detail as necessary. Due to the discrete nature of the levels, the
”popping” effect may occur during the model swapping.

Figure 3: Darker areas are rendered with higher polygon detail.

• Continuos Levels of Detail (CLOD), uses a structure that contains a
continuously variable spectrum of geometric detail. The structure can then
be propped to smoothly choose the appropriate level of detail required for the
situation. A significant advantage of this technique is the ability to locally
vary the detail (on the model).

• View-Dependent Level of Detail (VLOD), uses the parameters of the
current view to more accurately represent the quality of the models from the
viewer’s point of view. A single object may span several levels of detail, it
is a selective refinement of CLOD. It shows nearby portions of the object at
a higher resolution than distant portions. VLOD has a better granularity
than CLOD because it allocates polygons where they are most needed.

• Hierarchical Levels of Detail (HLOD), the different DLODs of a model
will be grouped into a hierarchy and can create better scalability for large
structure models. Then, during the intersection test between the ray orig-
inating from the viewer and the object, the hierarchical structure of the
intersected model will be accessed, within which the distance of the ray is
used as a key to retrieve the DLOD involved.
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Chapter 3

Micro-mesh: current schema

As introduced in Chapter 2, µ-meshes are a compact format that is directly con-
sumed on GPU’s hardware (which will natively support the format) for represent-
ing extremely detailed geometries. This format consists of a special type of sub-
divided mesh and a set of scalar displacement values modeling the high-frequency
details.

3.1 Terminology

In this subsection, we provide key terminology that is essential for gaining a clear
understanding of the concepts related to µ-meshes. These terms serve as the
fundamental building blocks of our discussion.

• Base mesh is the low-resolution input mesh on which the subdivision scheme
is applied, it is a much more coarse version of the target mesh. Each face
is divided into a grid of smaller triangles called µ-faces, the distribution of
triangles will change according to the subdivision scheme.

• Target mesh is the high-resolution input mesh that we aim to approx-
imate starting from the subdivided base mesh through the displacements
(”µ-displacements”) of the new vertices (”µ-vertices”).

• Micro-displacements, at each µ-vertex obtained by the subdivision, the
base mesh positions and direction vectors are barycentrically interpolated.
The direction vector is scaled by a per-µ-vertex scalar displacement value
and added to the interpolated position generating the displaced µ-vertex.

• Micro-vertices, consists of the new vertices generated by the algorithm
which subdivided the base mesh according to the µ-mesh scheme.
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• Micro-faces, they are the new µ-triangles generated by the connection of the
previously generate µ-vertices by the execution of the subdivision algorithm.

3.2 Subdivision scheme

The method is based on a simplification scheme tailored to the generation of
high-quality base meshes, optimized for tessellation and displacement sampling, in
conjunction with algorithms for determining displacement vectors to control the
direction and range of displacements.

v0

v1

v2

Figure 4: Isotropic face of a mesh.

The triangular faces of the mesh are taken as they are and are subdivided using a
generative criterion, which in the implementations of this study (both for µ-mesh
and anisotropic µ-mesh) is the length of the subdivision, so-called ”target edge
length”. The aforementioned value is employed to compute the subdivision
level (represented as a power of 2 of the subdivision index) for each edge of the
face.

To elaborate, the length of each edge is divided by the target edge length,
and the outcome is rounded to the nearest power of 2. The resultant value is the
subdivision index for the respective edges of the face. The target edge length is
the criterion that determines the complexity in terms of µ-faces of the subdivided
mesh (the lower it is, the more µ-faces the subdivision will produce).
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max

(︃[︃
log2

(︃
∥vj − vi∥

target edge length

)︃]︃
, 0

)︃
, v ∈ Faces

i ∈ {0, 1, 2, 3}, j =

{︄
i+ 1, if i ̸= 2

0, if i = 2

(1)

Once the subdivision indices i, j and k are obtained, the µ-mesh subdivision
scheme is applied (Fig. 5). This scheme subdivides each side of the triangle into
a power of two raised to the corresponding subdivision index (i.e., 2i, 2j and 2k)
segments. Subsequently, these segments are connected to form the new µ-vertices
and µ-faces.

v0

v1

v2

i

j

k

Figure 5: i = j = k = 3 resulting in 23 = 8 segments per side.

The subdivision scheme strictly adheres to a precise internal mesh subdivision
policy. According to this rule, two sides maintain an identical level of subdivision,
while one side exhibits a subdivision level that is at most power of 2 lower than
the other two sides. Taking this into account, the quantity of internal µ-faces is
determined by the Expression 2. Here, j corresponds to the subdivision index of
the side that possesses a subdivision level equal to or lower than the subdivisions
of the other two sides1 expressed by i.

2i × 2i × 2j,where j ≤ i and |j − i| = 1 (2)

1This means k = i, for a more elegant formula in Equation 2 only the i index will be considered.
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This means that two sides must have the same level of subdivision. For instance,
combinations that could satisfy the condition include 8 × 8 × 4, 16 × 16 × 16,
8 × 8 × 2, and so forth. On the other hand, combinations that do not adhere to
the requirement might include 16× 8× 4, 8× 8× 16, and others.

The scheme is established through a process that involves iteratively processing
the mesh’s faces. Before executing the algorithm, temporary indices are assigned
to each edge of the mesh’s faces, with the target edge length serving as the guiding
parameter.
The process unfolds as follows:

1. Initial subdivision levels are assigned to edges based on their length and
the computed target edge length.

2. The µ-mesh scheme is repeatedly enforced on the base mesh. This is
accomplished by employing multiple times an enforcement procedure on the
mesh, iterating until stability is achieved. Stability is attained when the
µ-mesh subdivision scheme is consistently applied to all faces. Given that
setting a subdivision level for one edge could disrupt the subdivision of neigh-
boring faces, given this reason, enforcement needs to be carried out itera-
tively.

This approach ensures that the desired subdivision pattern is systematically ap-
plied to the mesh, optimizing the outcome by considering the edge length and
target specifications. Additionally, the iterative enforcement of the µ-mesh scheme
guarantees that adjacent faces remain compatible and maintain the desired sub-
division levels.

v0

v1

v2

Figure 6: Application of target mesh displacements on the µ-vertices.
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After obtaining the new µ-vertices and µ-faces, it is time to compute the displace-
ments vector concerning the target mesh. This involves performing line-casting
using the positions of the µ-vertices as origins and casting rays along the direction
(forward and backward) of the vertex normal. The intersection of the ray with the
faces [Möller and Trumbore, 1997] of the target mesh is computed, and the small-
est absolute displacement from the µ-vertex is saved. Once the displacements
vector is generated, it is used to perform the displacement of the µ-vertices (as
shown in Fig. 6) of the subdivided base mesh. The result is an extremely detailed
approximation of the target mesh.

3.3 Goals

The primary aim is to establish a robust construction methodology capable of gen-
erating precise and efficient µ-mesh representations from a high-resolution triangle
surface input.

In pursuit of this objective, it becomes imperative to navigate a series of
trade-offs inherent to the nature of µ-mesh representation. Specifically, these
trade-offs emerge due to the unique characteristics of µ-meshes (in bold).

Coarseness of base mesh, an essential consideration in the realm of µ-mesh con-
struction pertains to the granularity of the base mesh. It is empirically established
that the memory efficiency of µ-mesh representations increases as the coarseness
of the base mesh intensifies.

This optimization arises from the allocation of more intricate geometric details
into scalar displacements, with the generation of µ-displacements executed as
needed. Notably, the current design can accommodate substantial amplification
factors, often exceeding a ratio of 1000 to 1. Consequently, the strategic objective
is to employ a base mesh that exhibits granularity up to three orders of magnitude
coarser than that of the input surface, commonly referred to as the target mesh.

Reprojectability, this concept in the context of µ-mesh is fundamentally
concerned with the ability to faithfully reproduce the target surface. This entails
the necessity for the µ-mesh to intersect the target mesh precisely along the path
defined by the µ-mesh’s interpolated displacement vectors.

It’s important to note that meeting this requirement presents a significant
challenge, both in terms of achieving it and assessing its fulfillment. Ideally, the
rays representing displacement directions should exhibit local orthogonality as they
interact with and deform the input surface.
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Isotropy, within the domain of geometry processing, isotropy refers to a fun-
damental characteristic arising from the regular grid structure. This regularity
significantly impacts the shape and aspect ratio of the resultant µ-faces before
displacement occurs.

Consequently, the regular grid tends to impart an essential qual-
ity—equilateralness—especially to those base triangles that are already ap-
proximately equilateral in shape. This equilateral quality enhances the efficiency
of surface sampling. To maintain sampling efficiency, preference is given to
base triangles with lower aspect ratios. In contrast, longer, more elongated base
triangles, referred to as anisotropic triangles, yield comparatively less accuracy in
the sampling process.

Minimal prismoid volume, the goal is to minimize the volume of the
prismoid, which encompasses the represented surface. Given that the base
triangle area expands as the mesh becomes coarser, the length of displacement
vectors plays a crucial role in achieving a reduction in prismoid volume.

Shorter displacement vectors are desirable for two significant reasons: Firstly,
shorter vectors result in greater accuracy. Secondly, shorter displacement vectors
ensure that the prismoid acts as a tighter bounding hull, thereby enhancing culling
and rendering performance. It’s important to note that, as the prismoid serves
as an envelope, a base mesh that is further from the surface incurs a penalty in
terms of the prismoid volume.

Regarding the discourse opened in the last point, it should be said that
Micro-Mesh are specifically designed to work well with ray tracing. This means
that µ-triangles can be generated during the rendering process when needed. The
displaced surface is created within the boundaries defined by the base mesh and
target mesh face, forming a shape called a prismoid. This bounding nature of the
prismoid is utilized in constructing the ray-tracer’s BVH and when tracing rays
for the actual rendering.
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Chapter 4

Anisotropic Micro-Mesh: a new
proposal

Micro-Mesh can perform the subdivision of the base mesh into uniform and regular
triangles, a technique referred to as isotropic meshing. In this process, each side
of the mesh element is of uniform length, resulting in geometrically balanced shapes
(see Fig. 7a). This type of meshing is typically utilized to depict straightforward
geometric objects or scenarios where the physical characteristics of the object
exhibit little variation across different directions.

(a) Isotropic (b) Anisotropic

Figure 7: Comparison of isotropic and anisotropic triangle.

On the other hand, the anisotropic µ-mesh scheme utilizes an anisotropic mesh-
ing, in which the faces can vary in shape, size, and orientation in different direc-
tions. This kind of meshing is used when the physical or geometric properties of
the object vary significantly in different directions. An anisotropic mesh is a mesh
with long, elongated triangles (Fig. 7b) in the right places. They often provide
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better interpolation of multivariate functions with fewer triangles and they are
used in finite element methods to resolve boundary layers and shocks.
The main distinction between isotropic and anisotropic meshing lies in the reg-
ularity and adaptability of the grid elements to the properties of the object or
material being represented. Anisotropic meshing provides greater flexibility and
precision in representing complex objects or materials with directional properties.

In the field of remeshing, the ability to construct isotropic meshes facilitates
the creation of high-quality meshes [Jakob et al., 2015]. Anisotropic µ-meshes can
produce isotropic meshes even from anisotropic triangles, unlike µ-meshes. Micro-
Meshes follow a pattern that tends to generate µ-faces which maintains the same
structure as the ”macro-faces” (faces of the base mesh), without controlling the
anisotropy.

The ability to control anisotropy represents a key feature that enables the
meshes to achieve a more equilateral subdivision. In the paper describing the con-
struction of µ-meshes, considerable challenges are faced in attempting to generate
base meshes with equilateral faces. This is a complex task that requires a consid-
erable investment of time and resources. The anisotropic µ-meshes approach aims
to free the user from this burden, as it is the scheme itself that ensures a more
equilateral subdivision during the subdivision process.

Developing an anisotropic version of NVIDIA’s µ-mesh format introduces po-
tential advantages that are worth considering, although rigorous testing is required
to verify its benefits in comparison to the standard µ-mesh format.

The anisotropic µ-mesh variation offers a heightened level of flexibility and
adaptability compared to its regular counterpart. While the conventional format
relies on uniform triangles, the anisotropic approach allows for the mesh to be
tailored to intricate shapes and orientations. This adaptability could result in
improved accuracy when capturing complex details and ensuring a more compre-
hensive representation of intricate features.

An appealing aspect of the anisotropic approach lies in its suitability for ob-
jects with preferred directional characteristics, such as surfaces that exhibit light
reflection or refraction. By aligning the mesh with these directions, the poten-
tial for enhanced visual quality becomes evident, particularly in rendering surfaces
with varied reflective or textured attributes.

4.1 Subdivision scheme

The anisotropic edge subdivision scheme consists of two edges that share the same
maximum subdivision level and a third edge that is of a lower subdivision level
(regardless of the extent, as long as it is lower). In contrast to the µ-mesh subdi-
vision scheme (Eq. 2), the anisotropic µ-mesh scheme (Eq. 3) ensures a scenario
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where the distribution of subdivisions is non-uniform and heterogeneous.

2i × 2i × 2j,where j < i (3)

Considering an anisotropic triangle, when employing the anisotropic µ-mesh sub-
division scheme, two of its edges will reach the maximum subdivision level, while
one edge will attain a lower subdivision level, as depicted in Figure 8a. Conversely,
with the µ-mesh scheme, only one edge will reach the maximum subdivision level,
while the other two edges will undergo a lesser degree of subdivision (Fig. 8b).

(a) 23 × 23 × 22 — Anisotropic Micro-Mesh.

(b) 23 × 22 × 22 — Micro-Mesh.

Figure 8: An examination of the two subdivision schemes applied to an identical
elongated triangular shape.

From the scheme comparison, it is evident that the anisotropic µ-mesh scheme
exhibits a notably more homogeneous behavior when applied to elongated triangles
of this nature. It achieves a uniform distribution of the µ-faces. This observation
is particularly intriguing because it generates significantly fewer µ-faces and µ-
vertices compared to other schemes, while simultaneously demonstrating efficient
surface sampling.
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To conduct a meaningful assessment (Chapter 6), it is essential to compare the
schemes using an equal number of µ-faces generated by each scheme and evaluate
their response to µ-vertices displacement towards a target mesh.

4.2 Implementation

Taking into account the triangular configuration illustrated in Figure 8a, our ob-
jective is to contemplate the methodology for extracting all requisite triangles. In
furtherance of this objective, we have formulated a logical diagram of the configu-
ration (depicted in Fig. 9) that accentuates the logical spatial orientation of these
triangles.

The diagram depicts the enumeration of border segments we aim to obtain
through subdivision along all three sides of the triangle, namely the shorter side,
the irregular longer side, and the regular longer side, respectively.

Figure 9: Anisotropic configuration for 23 × 23 × 22.

This diagram will be reused and expanded upon in the future for the generation
of the µ-faces. Currently, it has been presented to establish that this blueprint
structure will serve as the foundation for constructing the algorithm.

The structure of anisotropic µ-mesh is obtained by executing a dedicated subdi-
vision algorithm (Algo. 1) on the base mesh. This algorithm yields the base mesh
with increased vertices (µ-vertices) and faces (µ-faces), the subdivided mesh. The
algorithm iterates over the faces of the mesh and first extracts the µ-vertices,
subsequently constructing the µ-faces.
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Iterating over each face (outermost loop) of the base mesh involves performing a
series of operations at each step:

1. Declaration of auxiliary variables.

2. Construction of µ-vertices (Algo. 2).

3. Construction of µ-faces (Algo. 3).

Once the subdivided mesh is generated update (e.g., bounding box) and clean
(e.g., removing duplicated vertices) procedures will be executed. In the initial
step, various auxiliary variables are defined for each step to facilitate calculations.

These variables are essential for determining the subdivision level of the longer
side, the subdivision level of the shorter side, the level of anisotropy, and the
number of vertices in the subdivided mesh at a specific iteration of the outermost
loop.

• n, represents the subdivision level of the longer side, specifically, the edge
with the highest subdivision index. It is denoted as ”n,” and it takes on
values that are powers of 2. The index of the power corresponds to the
subdivision index of the edge.

• m, denotes the subdivision level for the shorter side of the triangle. It is
associated with the edge having the lowest subdivision index. Like ”n,” it
consists of powers of 2.

• aniso, quantifies the level of anisotropy within the problem. It is also a
power of 2, where the index reflects the difference between ”n” and ”m.” In
other words, it is a measure of the disparity in subdivision levels between
the longer and shorter sides.

• k, represents the number of vertices that are part of the subdivided mesh
during a specific iteration of the outermost loop. This variable helps keep
track of the subdivided mesh vertices size as it evolves through each
iteration.

These auxiliary variables collectively aid in characterizing and managing the sub-
division process and anisotropy within the mesh.
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Algorithm 1 Algorithm overall structure.

1: procedure anisotropicMicromeshSubdivide
2: subdivided← Mesh()
3:

4: for ∀f ∈ baseMesh.faces do
5: subLvlEdge0← subdivision level for the long edge
6: subLvlEdge1← subdivision level for the long edge
7: subLvlEdge2← subdivision level for the shortest edge
8:

9: n← 2subLvlEdge0

10: m← 2subLvlEdge2

11: aniso← 2subLvlEdge0−subLvlEdge2

12: k ← subdivided.vertices.size()
13:

14: Generation of µ-vertices (Algorithm 2)
15: Generation of µ-faces (Algorithm 3)
16: ...
17: end for
18:

19: subdivided.updateBoundingBox()
20: subdivided.updateEdges()
21: ...
22:

23: return subdivided
24: end procedure

Second step, the µ-vertices has to be generated and added to the vertices data
structure of the subdivided mesh, in Figure 10, a diagram can be seen illustrating
how the data structure organizes them. They descend in sequence from left to
right and from top to bottom.
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Figure 10: Micro-vertices structural diagram.

To implement the Algorithm 2 we have to consider the diagram of Figure 10.
Two indices are needed, vx for the horizontal coordinates and vy for the vertical
coordinates.

For the generation two nested loops are needed: the first one iterates over the
vertical coordinates from 0 to m (included), while the other loop iterates over the
horizontal coordinates, from 0 to the last available horizontal coordinate1 ζ. The
value of ζ is determined in the outermost loop, and can change depending on the
value of m:

ζ =

{︄
vy · aniso + aniso− 1, if m > 0

vy · aniso, if m = 0
(4)

Within the nested loop, the integer coordinates vx and vy become accessible, ne-
cessitating the derivation of the barycentric coordinates a, b, andc of the µ-vertex.
The formula for barycentric coordinates posits that their sum yields the value 1.

c =
vx

n

a =

⎧⎪⎪⎨⎪⎪⎩
0, if vx = n

(1− c) · m− vy

m− vx

aniso

, if vx ̸= n

b = 1− a− c

(5)

1referred to as lastVx within the codebase.
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The computation of coordinates follows the sequence of equations as presented.
The variable c represents a fraction of n, while a involves a more intricate compu-
tation that accounts for the contribution of c as a fraction.

The denominator m− vx
aniso

indicates the count of vertical segments connecting
the µ-vertices (Fig. 10), and the numeratorm−vy represents the vertical segments
below the current µ-vertex. The computation of b is straightforward. Once the
barycentric coordinates are computed, a new µ-vertex is generated. This vertex is
produced by a linear combination of the computed barycentric weights applied to
the current vertex position.

Algorithm 2 Micro-vertices generation.

1: procedure anisotropicMicromeshSubdivide
2: ...
3: for vy ← 0 to m do
4: lastV x← vy · aniso+ aniso− 1
5:

6: if vy = m then
7: lastV x← lastV x− (aniso− 1)
8: end if
9:

10: for vx← 0 to lastV x do
11: c← vx/n
12: a← 0
13:

14: if vx ̸= n then
15: a← (1− c) · (m− vy)/(m− vx/aniso)
16: end if
17:

18: b← (1− a− c)
19: bary ← [0, 0, 0]
20:

21: bary[w0]← b
22: bary[w1]← c
23: bary[w2]← a
24:

25: subdivided.vertices.push(getSurfaceVertex(f, bary))
26: end for
27: end for
28: ...
29: end procedure
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In the second phase of the algorithm, the objective is to generate the µ-faces and
add them to the faces data structure of the anisotropic µ-mesh. The triangle faces
should be generated such that they follow the configuration diagram of Figure 9.
An interesting observation is that by rotating the red triangles by an angle of 180◦,
a rectangular grid is formed (Fig. 11).

Figure 11: Rectangular grid of µ-faces, with labels indicating pairs of attached
blue-red triangles.

This rectangular grid of triangles proves to be highly advantageous in the code-
base implementation. The process of generating the grid is trivially obtained by
the utilization of two nested loops. Subsequently, the algorithm adjusts the ro-
tated red triangles at their coveted position (Fig. 12), by rotating their vertices
back of 180◦.

Two indices will be used in the practical implementation, denoted as fx and
fy, which are necessary to reference an individual µ-face. The outer loop is respon-
sible for indexing the vertical coordinates, and the inner loop is for the horizontals.
Specifically, the outer loop iterates through the range from 0 up to m (excluded).
Conversely, the inner loop operates within the bounds of 0 to n + aniso − 1 (ex-
cluded).
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Figure 12: Red triangles rotated to their coveted position.

In the codebase, is introduced a local function2 φ, which is designed to operate
within a confined scope. This function takes as input a bi-dimensional vector of
integers v, representing the local coordinates of a µ-face. Its primary objective
is to determine the corresponding index within the face data structure, a task
accomplished through the following formula:

φ(v) =
vy · aniso · (vy + 1)

2 + vx

(6)

Within specific loops, three vertices v0 = (fx, fy), v1 = (fx, fy + 1), and v2 =
(fx+1, fy+1) are defined, representing the bi-dimensional local coordinates of the
µ-face. Due to their localized nature, these vertices require transformation into a
format compatible with the faces data structure of the subdivided mesh (µ-mesh).

This transformation involves the variable k (representing the current number
of vertices) in conjunction with the local function φ. For a given iterative step i,
the 3D face vector µ-facei is defined as follows:

µ-facei =

⎡⎣k + φ (v0)
k + φ (v1)
k + φ (v2)

⎤⎦ (7)

The code has to handle also the red triangles (Fig. 11), which are triangles that
are rotated in the current data structure, so they have to be rotated back otherwise
they will be misplaced in the final subdivided mesh. To ascertain whether a red
triangle is currently under processing, a condition is employed. This condition

2referred to as toVertexIndex within the codebase.
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involves an assessment of whether the horizontal coordinate fx exceeds the value
of (fy + 1) · aniso − 1. If this condition is satisfied, signifying the presence of a
red triangle to be processed, the subsequent action is performed, which entails
rotating it by 180◦.

Figure 13: Red triangles rotation.

To accomplish this rotation, an auxiliary bi-dimensional vector of integers, denoted
as α = (n + aniso − 1,m), is introduced (variable referred as rotate within the
codebase). The subtraction of the µ-face coordinates from the α vector serves as
a pivot for the rotation operation applied to the red triangles. Consequently, for
a given iterative step denoted as i, the definition of the 3D face vector µ-facei will
be adjusted as follows:

µ-facei =

⎡⎣k + φ (α− v0)
k + φ (α− v1)
k + φ (α− v2)

⎤⎦ (8)

Distinct face vectors, denoted as µ-facei, will be generated for both red and blue
triangles. However, ultimately, these face vectors will be incorporated into the face
data structure of the anisotropic µ-mesh.
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Algorithm 3 Micro-faces generation.

1: procedure anisotropicMicromeshSubdivide
2: ...
3: function toVertexIndex(v)
4: return v.y · aniso · (v.y + 1)/2 + v.x
5: end function
6:

7: for fy ← 0 to m− 1 do
8: for fx← 0 to n+ aniso− 2 do
9: v0← [fx, fy]

10: v1← [fx, fy + 1]
11: v2← [fx+ 1, fy + 1]
12:

13: if fx > (fy + 1) · aniso− 1 then
14: rotate← [n+ aniso− 1,m]
15:

16: v0← rotate− v0
17: v1← rotate− v1
18: v2← rotate− v2
19: end if
20:

21: v0k ← k + toVertexIndex(v0)
22: v1k ← k + toVertexIndex(v1)
23: v2k ← k + toVertexIndex(v2)
24:

25: subdivided.addFace(v0k, v1k, v2k)
26: end for
27: end for
28: ...
29: end procedure

Following the generation process, several subsequent steps are performed. These
include the computation of the bounding box for the newly created mesh, updating
the relationships between edges, and eliminating duplicated vertices.

It’s worth noting that the presence of duplicated vertices is a remnant from
the µ-vertices generation procedure.
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4.3 Implicit LOD

One of the reasons why these formats for geometric processing are very attractive
is the directly proportional calibration of the level of detail (LOD) with respect to
the level of subdivision adopted.

Figure 14: LOD for short distances from the observer.

It, therefore, turns out to be possible to adopt specific configurations based on
distances and quantities of µ-faces to perform scaling of the model´s polygonal
resolution, all in real time without taking up memory space.
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Figure 15: LOD for medium distances from the observer.

The advantage of having this implicit run-time LOD comes from not having to
store different resolutions of the same model; two mesh inputs will be sufficient to
interpolate all desired resolutions.

Figure 16: LOD for long distances from the observer.
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A second advantage is the ability to choose a wide range of resolutions from those
interpolated, and thus to provide different resolutions of the same model for a
multitude of distances. In this way, the popping effect will be perfectly mitigated,
since the precision with which the desired resolution of the triangles can be set
avoids large jumps in resolution from one distance to another.

4.4 Highly obtuse isosceles triangles: a challenge

There is one specific case that undermines the quality of the final result: the
anisotropic scheme cannot gracefully handle highly obtuse isosceles triangles. The
triangles that are considered to perform the subdivision are not well matched to
each other, as can be seen in Figure 17 (this is a problem that also plagues classical
triangles µ-mesh).

Figure 17: Anisotropic division of a highly obtuse isosceles triangle.

A possible solution to this problem may also be trivial, considering the diagram
exhibited in Figure 18a, we note that the longest side will surely be adjacent to
another triangle, which in this particular case is an equilateral isosceles triangle.
Then simply divide the obtuse angle into two, that is, divide the two adjacent
triangles into four, thus obtaining four right triangles, with adjacent right angles.
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(a) Highly obtuse isosceles triangle. (b) Isosceles split.

Figure 18: Fix procedure for highly obtuse isosceles triangles.

After the isosceles split the subdivision scheme will take on a topology that will
qualitatively favor the aspect ratio of the triangles, and consequently be more
pleasing to the eye.

Figure 19: Anisotropic subdivision after the split.

It should be emphasized that the proposed solution was not implemented dur-
ing project development, so the empirical analyses performed (Chapter 6) do not
benefit from this optimization.3.

3It is not expected to have enough impact to justify implementation efforts.
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Chapter 5

Methodology

In this chapter, the methodologies employed in this research will be examined. This
examination will include an elucidation of the technical and software frameworks
that underpin the development and analysis. The subsequent sections will provide
insights into the development environment, tools, and software platforms used to
conduct the study effectively.

5.1 Project structure

The project has been structured in a way that input files are well separated from
those produced by the application. The structure is depicted in Fig. 20. Each
folder serves a specific purpose, and the project files have been organized in a
manner to achieve the cleanest possible directory structure.

• Root folder contains the source code files (.h and .cpp), the Python script
for computing the metrics (face-stats.py), and the configuration files for
the project and repository (mainwindow.ui, master thesis.pro, Makefile,
.gitignore and README.md).

• Release and Debug are the compiler output folders containing the exe-
cutable and file objects. The release build is optimized for the application’s
usage, while debug builds are intended for debugging purposes.

• Dependencies contains the external libraries utilized by the application.
For this project, only GLM [G-Truc Creation, 2005] (OpenGLMathematics),
a mathematics library exclusively for C++, is used for graphics software
based on the GLSL [OpenGL ARB, 2020] specifications.

• Models is the directory housing the base and target mesh models (inputs).
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• Evaluation is the directory that contains the subdivided and displaced sub-
folders of the samples built using the command-line interface of the applica-
tion (Sec. 5.2.2).

/

Release/

Debug/

Dependencies/

GLM/

Models/

Evaluation/

Displaced/

aniso/

.../

micro/

.../

Subdivided/

aniso/

.../

micro/

.../

Shaders/

Figure 20: Project directory structure.

5.2 Tools and technologies used

5.2.1 Qt framework

The development of robust and visually appealing Graphical User Interfaces
(GUIs) is a multifaceted endeavor that requires expertise across various domains,
encompassing graphics programming, user interface design, and software architec-
ture. Within this context, the Qt framework [Qt Software, 1995] from Qt Software
(also known as Trolltech) has emerged as a potent and versatile tool that signifi-
cantly streamlines the process of crafting graphical applications.

Qt stands as a cross-platform C++ framework offering a comprehensive array
of libraries and tools tailored for constructing applications endowed with sophisti-
cated graphical interfaces. With its extensive feature set and user-centric design,
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Qt has garnered substantial acclaim among software developers across diverse do-
mains, spanning computer graphics, multimedia, gaming, and scientific visualiza-
tion.

One of the foremost advantages of Qt is its seamless integration with OpenGL
[Khronos Group, 2017] (version 4.6.0 is used in the project), a widely adopted
graphic specification renowned for its capacity to render both 2D and 3D graph-
ics.

By harmonizing the capabilities of Qt and OpenGL, developers can create
applications that seamlessly intertwine advanced graphics prowess with user inter-
faces renowned for their intuitiveness. This integration proves particularly valuable
for applications that necessitate real-time rendering, intricate visualizations, and
interactive graphical elements.

Figure 21: Graphical User Interface.

The merits of leveraging Qt to construct graphical applications that harness
OpenGL are manifold. Chief among these is Qt’s high-level API, which abstracts
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myriad low-level intricacies, allowing developers to concentrate on refining ap-
plication functionality and design. This abstraction mitigates the complexity of
graphics programming, making it more accessible to a broader spectrum of devel-
opers.

Additionally, Qt’s cross-platform nature ensures that applications fashioned
with the framework can operate across diverse operating systems with minimal
adaptations. This cross-compatibility substantially diminishes the development
effort requisite to target multiple platforms, empowering developers to engage a
more extensive user base with their applications.

The developed graphical user interface (GUI) enables users to visualize
the mesh through an OpenGL widget. Interaction with the widget is facilitated
using mouse input, allowing users to rotate the view using an ArcBall mechanism
[Shoemake, 1992].

The application provides the capability to display four types of meshes:
the base mesh, the subdivided mesh, the target mesh, and the projected mesh
(which is the subdivided mesh displaced toward the target mesh). The user can
effortlessly switch between these using keyboard shortcuts: B for the base mesh,
S for the subdivided mesh, T for the target mesh, and P for the projected mesh.

The application’s main controls are located on a bar to the right, divided
into six group boxes:

• Current mesh (Fig. 22).

• Base mesh selection (Fig. 23).

• Subdivision schemes (Fig. 24).

• Target mesh selection (Fig. 25).

• Mesh informations (Fig. 26).

• Keyboard command legend (Fig. 27).

Figure 22: Current mesh group box.

The first group box is responsible for displaying the currently rendered mesh on the
OpenGL widget and includes a checkbox to indicate the presence of the wireframe.
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Figure 23: Base mesh samples.

Subsequently, the second group box handles the loading of the base mesh. For
testing the application, four shortcut buttons have been provided for loading var-
ious complexities of the same sample model. The (5) button enables the user to
select an arbitrary base mesh.

Figure 24: Subdivision schemes group box.

The third group box contains two buttons that allow switching between the two
subdivision schemes. Once one of the schemes is selected, a slider titled ”Micro-
faces”, will become enabled, the value of this slider will determine the number of
µ-faces that the user would like to use in the subdivided base mesh.

This is made possible by the implementation of the dichotomous search of the
target edge length that best approximates the number of targets µ-faces (Sec. 8).

Figure 25: Target mesh selection and morphing group box.

The fourth group box, similar to the second (Fig. 23), this group box allows the
loading of the target mesh, and the morphing of the subdivided mesh towards it. It
is possible to use the shortcut buttons for loading different resolutions of the same
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sample target mesh or to arbitrarily pick a file. After the selection, minimum
displacements (line-casting, Fig. 6) calculations are performed. The morphing
slider will be enabled once the target mesh displacements will be computed.

Figure 26: Meshes information’s group box.

In the fifth group box the information regarding the amount of vertices and faces
of all the meshes, in the case of the subdived mesh the subdivision scheme will be
displayed.

Figure 27: Legend group box.

In the last group box, there is a legend for all the keyboard commands that the
user can use.

To conclude our overview of the graphical interface, let’s examine the appli-
cation’s menu bar. It consists of only two menus: the first one, labeled ”File”,
contains options to load or remove the mesh within the widget. Additionally, it
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provides the option to export the subdivided or projected mesh when the displace-
ment slider is set to 100, if applicable.

(a) File menu.

(b) Other operations menu.

Figure 28: Menu bar.

The second menu is labeled ”Other operations”, as the name suggests. It encom-
passes operations that are not directly involved in the application’s primary usage
but may be employed for larger computations. For instance, it includes functions
like displacing vertices by a scalar.

5.2.2 Command-line execution

The application is equipped with a command-line interface (CLI) that provides
a range of advantages for its practical utilization. This approach gains significance
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due to multiple contributing factors.
Notably, the GUI, discussed in Section 5.2.1, demands substantial computa-

tional resources, encompassing both RAM (random-access memory) and CPU
(central processing unit) capabilities, for the execution of contextual operations
and calculations. Moreover, there exists a clear imperative to execute standard-
ized generative procedures.

The principal motivation for adopting the command-line execution lies in its
role as a supplementary tool for the comprehensive assessment and meticulous
examination of the alternative scheme expounded upon in Chapter 6. In this
context, the CLI encompasses distinct commands.

gen-sample1 (Sec. 5.2.6) to conduct empirical analyses, as detailed in Chapter
6. is responsible for generating a displaced base mesh towards a specified target
mesh, based on a desired amount of µ-faces (using the option --microfaces) and
the subdivision scheme (using the option --scheme). This command executes
a dichotomous search (Sec. 5.3.3) to determine the required target edge length
(Sec. 3.2) for a given quantity of µ-faces. The resulting displaced mesh will have
an approximated amount of µ-faces respect the given value, and it will be stored
in the following directory: ./Output/Evaluation/{scheme}/{base mesh name}
2.

gen-subdivided-sample is responsible for exporting the subdivided version
of the given base mesh according to the subdivision scheme (--scheme) and
number of µ-faces desired (--microfaces). The resulting subdivided mesh will
be stored in the following directory: ./Output/Subdivided/{scheme}/{base
mesh name}

The CLI uses four distinct options for the aforementioned commands:

• --base-mesh allows for the specification of the base mesh, with the default
being pallas 1000.obj

• --target-mesh allows the specification of the target mesh, with the default
being pallas.obj

• --factor sets the amount of target µ-faces using a multiplication factor
F of the target faces (e.g., F=2.1, the amount of µ-faces generated by the
subdivision will be ∼ 2.1× target µ-faces).

1gen-sample is the only command used in the Python evaluation script (Sec. 5.2.6).
2{scheme} is placeholder which can assume the value of ”micro” or ”aniso” depending on

the subdivision scheme adopted.
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• --scheme sets the subdivision scheme.

This CLI-driven approach serves to streamline the evaluation process while uphold-
ing consistency and reproducibility, thus significantly contributing to the research
objectives.

5.2.3 Data structures

In the realm of geometry processing, the selection of a programming language
plays a pivotal role in determining the efficiency, flexibility, and robustness of
implemented solutions.

The C++17 offered numerous benefits, including improved syntax, enhanced
support for modern programming paradigms, and additional standardized libraries.

For the geometric processing of 3D meshes, a suitable data structure must be
implemented; the solution consists of smaller classes for faces, vertices, and edges.
And a compound class of the latter to represent the actual mesh.

Mesh class

class Mesh : protected QOpenGLExtraFunctions

{

public:

std::vector <Vertex > vertices;

std::vector <Face > faces;

std::vector <Edge > edges;

BoundingBox bbox;

float R;

int maxAxis;

};

Listing 5.1: Mesh class definition.

The Mesh class consists of three dynamic vectors for vertices, faces, and edges
respectively, the latter vector relating to the previous ones. The class has its own
BoundingBox object and two members R and maxAxis are used for line-casting
optimization (Sec. 5.3.1).
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Face class

struct Face

{

uint index [3];

uint edges [3];

vec3 norm;

float posMiddle;

};

Listing 5.2: Face class definition.

The Face class contains a three-dimensional array containing the indices (of
the ”vertices” vector) of the vertices that make up the face. A second three-
dimensional array containing the indices (of the edge vector) of the edges that
make up the face. A mathematical vector representing the normal of the face and
a posMiddle member is used for line-casting optimization.

Edge class

struct Edge

{

uint faces [2];

uint side [2];

uint subdivisions = 0;

};

Listing 5.3: Edge class definition.

The Edge class consists of a two-dimensional array containing the indices (of the
vector ”faces”) of the faces shared by the edge. A two-dimensional array indicates
to me whether the left or right side of the edge is considered (duplicate edges are
created for faces). And an integer value to indicate the subdivision index of the
considered edge.

Vertex class

struct Vertex

{

vec3 pos;

vec3 norm;

};

Listing 5.4: Vertex class definition.
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The Vertex class is composed of two mathematical vectors, one for the position
and the other for the vertex normal (average of the normals of the faces adjacent
to the vertex).

5.2.4 OpenGL Mathematics

OpenGL Mathematics [G-Truc Creation, 2005] (GLM) is a C++ mathemat-
ics library for graphics software based on the OpenGL Shading Language
[OpenGL ARB, 2020] (GLSL) specification.

GLM provides classes and functions designed and implemented with the same
naming conventions and functionalities as GLSL (3D transformations, vector
and matrix operations, and other mathematical operations essential for computer
graphics) so that when a programmer knows GLSL, he knows GLM as well which
makes it really easy to use.

5.2.5 MeshLab

The choice to utilize MeshLab [Cignoni et al., 2008] is based on several convincing
reasons. Its adaptability to a wide range of 3D data formats and mesh complexities
aligns seamlessly with the project’s requirements.

Furthermore, MeshLab provides a comprehensive suite of tools and algorithms,
that address various tasks such as mesh cleaning, simplification, smoothing, tex-
turing, and visualization. These capabilities prove indispensable for the intricate
manipulation and analysis of 3D data necessitated by the project’s objectives.

In addition, MeshLab boasts a user-friendly interface and extensive documen-
tation, significantly reducing the learning curve for team members and collabora-
tors. This fosters effective collaboration and facilitates knowledge transfer through-
out the project.

The choice to utilize MeshLab as the primary software for 3D mesh processing
is underpinned by its versatility, comprehensive toolset, user-friendly interface,
and seamless integration into the project’s workflow. MeshLab’s capabilities align
with the intricate demands of 3D data manipulation, analysis, and visualization,
making it an instrumental asset in achieving the project’s objectives. This strategic
decision reflects a commitment to efficiency, accuracy, and the successful execution
of 3D data processing tasks.

5.2.6 Evaluation script

Python [Van Rossum and Drake, 2009], a versatile and dynamically typed pro-
gramming language, was also utilized in certain aspects of this project. Python’s
ease of use, extensive libraries, and rapid development capabilities made it an ideal
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choice for various scripting tasks, data preprocessing, and automation processes
within the application.

The scripting language was employed to create a script that interfaces with
MeshLab to compute per-face statistics3. This script can be run from the command
line and can receive three distinct options, each of which, if omitted, holds a default
value. In the context of conducted empirical analysis (Chapter 6), the following
command has been used:

python ./face -stats.py --base -mesh=koma -inu_850.obj

--target -mesh=koma -inu.obj

Possible options accepted by the script:

• --base-mesh, this option allows setting the base mesh. If left blank, the
script defaults to the mesh pallas 124.obj. The option is used for retrieving
the actual mesh from the ./Models.

• --target-mesh, this option enables the setting of the target mesh. If omit-
ted, the script utilizes pallas 5000.obj. The target mesh option is used
for retrieving the actual mesh from the ./Models directory, it will be used
repeatedly for computing the distance with respect to the displaced samples.

• --clean, if this option is present it will start the cleaning procedure erasing
all the elements in ./Evaluation/micro and ./Evaluation/aniso

The Python evaluation script will run the command line gen-sample (Sec. 5.2.2)
multiple times giving input to the base mesh and the target mesh through two
distinct loops. Both the loops will run the commands with --factor option that
variates from 1,0 to 4,0.

The first loop will use the classical subdivision scheme (--scheme=micro or
default), and the second is the anisotropic (--scheme=aniso). Subsequently, the
script proceeds to access the directories of the new exported projected sample
meshes (as discussed in Chapter 6) for both subdivision schemes:

• ./Output/Evaluation/micro/{base mesh {faces}}

• ./Output/Evaluation/aniso/{base mesh {faces}}

After opening the list of pertinent files, the script iterates through each sam-
ple, calculating the scalar statistics per face quality, according to the aspect
ratio per face (using the dedicated method from the PyMeshLab library
[Muntoni and Cignoni, 2021]). The resulting distances are then stored within the

3This metric will be extensively discussed in Chapter 6
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same folder containing the samples.

In summary:

1. Generate 30 subdivided and displaced samples (F ∈ [1.0, 4.0]) for the µ-mesh
scheme.

2. Generate 30 subdivided and displaced samples (F ∈ [1.0, 4.0]) for the
anisotropic µ-mesh scheme.

3. Export scalar statistics by inradius/circumradius aspect ratio per face for
the µ-mesh scheme.

4. Export scalar statistics by inradius/circumradius aspect ratio per face for
the anisotropic µ-mesh scheme.

Upon completion of execution, two text files are generated and saved in the same
directory of the samples, containing the per-face statistics of the displaced samples
for both subdivision schemes.

5.2.7 Git

In the world of version control systems (VCS), the selection of an appropriate
tool holds paramount significance for the success of any software development
endeavor. In this context, the choice of Git [Linus Torvalds, 2005] as the primary
version control system for this project merits elucidation.

The decision to employ Git is underpinned by several compelling factors.
Firstly, Git is renowned for its distributed nature, affording collaborators the flex-
ibility to work offline while preserving the full version history.

Secondly, Git boasts a robust and efficient branching mechanism. The ability
to create isolated branches for feature development, bug fixing, and experimen-
tation not only facilitates collaborative development but also enhances project
organization and code stability. The branching model, epitomized by Git, aligns
with the principles of agile software development [Martin, 2003], where iterative,
incremental progress is the cornerstone.

Furthermore, Git’s widespread adoption across the software development in-
dustry underscores its reliability and robustness. Its extensive user base and com-
prehensive documentation facilitate problem resolution and knowledge sharing,
mitigating development bottlenecks.

The created repository is available on GitHub [Manuel Pagliuca, 2023] and
encompasses all the files outlined in the structure detailed in Section 5.1.
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5.3 Optimizations

In this chapter, optimizations that have been integrated towards the final stages
of the project are outlined. These optimizations encompass both time complexity
and conceptual optimizations for the µ-mesh schema (Sec. 5.3.2).

5.3.1 Line-casting

The line-casting operation is a fundamental process for finding the minimum dis-
placements for the µ-vertices of the mesh subdivided in the direction of the target
mesh.
The initial implementation of the line-casting algorithm for µ-vertices towards the
faces of the target mesh was not an optimized approach but rather a brute-force
one. The latter traced all possible line combinations originating from the µ-vertices
and intersecting all faces of the target mesh.

It is evident that this approach consumes a lot of resources; specifically, the
algorithm had a time complexity of O(n2). This algorithm did not consume too
much time with low-resolution meshes (thousands of triangles) and served its pur-
pose in the initial research phase of the anisotropic scheme.

However, for obtaining a better empirical analysis (Sec. 6), it was desired to use
many models with higher resolutions (millions of triangles), and such complexity
would have made this process extremely slow (we are talking about weeks if not
months of rendering). This approach is detailed in the pseudo-code4 of Algorithm
4.

In summary, member function getDisplacements(...) is called on the subdi-
vided mesh, with the target mesh passed as a parameter. The function iterates
over the vertices of the subdivided mesh, passing position and normal information
to another auxiliary function, minimumDisplacement(...).

This second function is responsible for returning theminimum displacement
from the origin of the µ-vertex with respect to the faces of the target mesh. Using
the received positions and normals, two rays in opposite directions are created,
which will be required for the line-casting. The line-cast is resolved using the
method intersectTriangle(...) of the Ray class.

This method returns a boolean that identifies whether an intersection along
the ray has occurred. If this is the case, it checks if the returned displacement is
smaller than the current minimum minDisp. If it is, then the current minimum
is replaced with the newly found one. The result is returned and added to the
displacement vector at the end of the loop.

4In the pseudo-code the elements in bold represent mathematical vectors.
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Algorithm 4 Brute-force µ-vertices line-casting.

1: procedure minimumDisplacement(origin,direction,Mesh target)
2: minDisp←∞
3: for Face f ∈ target.faces do
4: v0 ← (target.vertices[f.index[0]].pos)
5: v1 ← (target.vertices[f.index[1]].pos)
6: v2 ← (target.vertices[f.index[2]].pos)
7:

8: fwdRay ← Ray(origin, direction)
9: bwdRay ← Ray(origin,−direction)

10:

11: fwdDisp, bwdDisp← 0
12: fwdIntersect← fwdRay.intersectTriangle(v0,v1,v2, fwdDisp)
13: bwdIntersect← bwdRay.intersectTriangle(v0,v1,v2, bwdDisp)
14:

15: if forwardIntersect then
16: if |minDisp| < |forwardDisp| then
17: minDisp = forwardDisp
18: end if
19: end if
20:

21: if backwardRay then
22: if |minDisp| < |backwardDisp| then
23: minDisp = −backwardDisp
24: end if
25: end if
26: end for
27:

28: return minDisp
29:

30: end procedure
31:

32: procedure getDisplacements(Mesh target)
33: displacements← [ ]
34:

35: for V ertex v ∈ vertices do
36: displacements.push(minimumDisplacement(v.pos, v.norm, target))
37: end for
38: end procedure
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To be precise, the complexity of this algorithm is O(|vertices| · |target.faces|),
which, given the size of the meshes, falls into the class of quadratic functions.
Our solution reduces the complexity from O(n2) to O(n · log n) (pseudo-linear) by
employing specific techniques that allow us to reduce the number of intersections
with the faces of the target mesh to a significant neighborhood around the
considered µ-vertex.

Introduction of new fields in the data structures representing the mesh:

• maxAxis and R in the Mesh class.

• posMiddle in the Face class.

In the Mesh class, the integer maxAxis represents the axis on which the mesh
extends the most, the integer maps respectively the X, Y , and Z axes to 0,1, and
2. Instead, the decimal R represents the maximum half-extension on the maxAxis
of the largest bounding box of all faces.

In the Face class, the decimal posMiddle denotes the midpoint in the range be-
tween the face vertices with minimum and maximum coordinates on the maxAxis
(axis on which the mesh extends the most).

Figure 29: Finding R and posMiddle by considering faces coordinates projected
on the axis of maximum extension (maxAxis).
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Algorithm 5 Update posMiddle and R.

1: procedure updatePosMiddleAndR
2: R = −∞
3:

4: for Face f ∈ faces do
5: pos0← vertices[f.index[0]].pos[maxAxis]
6: pos1← vertices[f.index[1]].pos[maxAxis]
7: pos2← vertices[f.index[2]].pos[maxAxis]
8:

9: posMax← maxFloat3(pos0, pos1, pos2)
10: posMin← minFloat3(pos0, pos1, pos2)
11: halfExt← (posMax− posMin)/2
12:

13: f.posMiddle← (posMax+ posMin)/2
14:

15: if R < halfExt then R = halfExt
16: end if
17: end for
18: end procedure

The general scheme is not particularly changed from the brute-force implementa-
tion, there are two extra steps before extracting the displacements:

1. Computing and updating the R and posMiddle fields (see Algorithm 5).

2. Sorting the mesh faces by posMiddle (non-decreasing).

3. Iterating on the µ-vertices of the subdivided mesh and calling the
minimumDistance(...) function, passing position, normal, and target mesh
as parameters (identical step as the brute-force approach).

The real radical change occurs in the new implementation of
minimumDisplacement(...), the explanation in words is fundamental to
such optimization the code unfortunately can be cryptic to decipher without
clues. Outline of the minimumDisplacement() method:

1. Definition of useful variables and constants:

• DIST MAX, constant representing the maximum distance to consider
casting. This time it will not be∞ but 1

100
of the target mesh bounding

box, this is to avoid the infinite loop.
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• minDisp, a variable that will contain the minimum displacement at the
end of the procedure.

• line, an instance of a Line object, this object represents a line and
contains in itself the member method intersectTriangle(...) to perform
line casting.

• posOrigin, a variable that contains the coordinate of the origin with
respect to the axis where the mesh extends the most (maxAxis), is
initialized to origin[maxAxis]

• Two indices i and j, initialized out-of-bound to -1 and |target.faces|
that will later be updated to the indices of the faces before and after
the posMiddle equal to posOrigin, through a binary search.

2. Binary search to set the values of i and j indices to those of the target mesh
faces that have a posMiddle less (for i) and greater (for j) than originPos,
respectively.

3. Binary search for minimum displacement.

• The condition of this loop is that as long as indexes i and j are in-bound,
then it can continue the search, otherwise it stops.

• Important note to remember, the updatePosMiddleAndR() function
after it is run sorts the mesh faces using posMiddle as a criterion. This
is a very important step for the optimization to work.

• The search operation traverses both the left and right of the tar-
get.posMiddle, conducting early rejection tests on the posMiddle in-
dexed by i and j. For both indices, we validate whether the posMiddle,
in consideration of the posOrigin, falls within the interval defined by
R. This validation helps us identify the triangle as a face of reason-
able consideration for subsequent intersection testing. The significant
breakthrough lies in the fact that the vector is sorted based on posMid-
dle. Consequently, if the early rejection test were to fail for one of the
indices, it would imply that elements preceding i or succeeding j would
inherently possess too low or too high posMiddle values. As a result,
it becomes possible to terminate the search in either direction of the
array, whether leftward or rightward.
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Algorithm 6 Logarithmic implementation of minimumDisplacement(...)

1: procedure minimumDisplacement(origin,direction,Mesh target)
2: DIST MAX← bbox.diagonal · 0.01
3: minDisp← DIST MAX
4: line← Line(origin,direction)
5: posOrigin← origin[maxAxis]
6:

7: i← −1
8: j ← |target.faces|
9:

10: Binary Search of target.posMiddle
11: Set indices i and j as predecessor and successor of target.posMiddle
12:

13: while i ≥ 0 ∨ j < |target.faces| do
14: if i ≥ 0 then
15: if early rejection test for the left side of the array then
16: i← −1
17: else
18: target.intersectTriangle(i−−, line,minDisp)
19: end if
20: end if
21:

22: if j < |target.faces| then
23: if early rejection test for the right side of the array then
24: j ← |target.faces|
25: else
26: target.intersectTriangle(j ++, line,minDisp)
27: end if
28: end if
29: end while
30:

31: if minDisp == DIST MAX then
32: minDisp = 0
33: end if
34:

35: return minDisp
36:

37: end procedure
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5.3.2 Micro-Mesh common edge fix

After the µ-mesh scheme is enforced n times, at the end of this operation the
pattern will turn out to be respected for all faces of the mesh base before it
is subdivided again. However, it turns out that this strategy can occasionally
produce an edge that is unnecessarily coarser.

(a) Subscaled common edge (b) Fixed common edge

Figure 30: Common edge with coarser level of subdivision (before and after fix).

Let us consider the adjacent faces highlighted in Figure 30a, we have two adjacent
faces with configuration 23×23×22, where 22 is the level of subdivision of the edge
in common. It turns out to be immediate to understand that the coarser level of
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subdivision is not appealing on the common edge. Because the internal number of
triangles has no reason to be made in-homogeneous at one point when for most of
the surface area covered by the triangles there is a 23 subdivision.

The cause of this phenomenon is a side effect of the application of the µ-
mesh subdivision scheme (Eq. 3), that even if applied several times on the same
mesh until convergence is reached, occasionally will leave adjacent edges of similar
triangles less subdivided.

The solution is quite simple, we need to add a correction routine to be exe-
cuted after the scheme reinforcement to get the correct edge topology (Fig. 30b).
The correction algorithm (Algo. 7) iterates on the edges of the subdivided mesh,
ignoring the open edges, in the case where the maximum subdivision indices
of both the adjacent faces coincide, and the shared edge has a subdivision index
less than 1 with respect to the maximum. In that case, the subdivision index of
the shared edge will have to be equated with that of the maximum edges.

Algorithm 7 Adjacent edge fix routing for µ-mesh scheme.

1: procedure fixEdgesSubdivisionIndicesMicromesh
2: for Edge e ∈ Edges do
3:

4: if e.faces[0] == −1 ∨ e.faces[1] == −1 then
5: continue
6: end if
7:

8: eMax0← getFaceSubdivisionIndex(e.faces[0])
9: eMax1← getFaceSubdivisionIndex(e.faces[1])

10:

11: if eMax0 == eMax1 ∧ e.subdivisions + 1 == eMax0 then
12: e.subdivisions = eMax0
13: end if
14: end for
15: end procedure

5.3.3 Arbitrary number of Micro-faces

Initially, the subdivision was done using a special slider in the GUI (Sec. 5.2.1),
which allowed the user to set the value of the target edge length (Eq. 1) and
immediately afterward perform subdivision according to the selected pattern.

This may make sense for those who developed the project, but not much for
an outside user to whom the work is being exposed for the first time. Instead, it is
much more useful to provide a slider that would allow the user to set the number
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of desired µ-faces. The solution is to perform a binary search of the target edge
length required to find a quantitative approximation of the µ-faces entered by the
user.

The implementation of this binary search requires an auxiliary function
predictMicroFaces(...) which receives as a parameter the subdivision scheme and
the target edge length, and is able to predict with specific formulas, the needed
target edge length for the given µ-faces. More formally, we can define the two
prediction equations by considering the following variables:

• k the maximum subdivision index of a face.

• h the minimum subdivision index of a face.

• aniso is the level of anisotropy of a face, expressed as the difference between
k and h (this variable is available only for the anisotropic µ-meshscheme).

It should be remembered that before the prediction is calculated, the reinforcement
(and edge fix for µ-mesh scheme) of the chosen subdivision scheme is carried out,
based on the provided target edge length. Only after the subdivision indices are
assigned will it be possible to compute the prediction for the µ-mesh scheme (Eq.
9), and for the anisotropic µ-mesh scheme (Eq. 10).∑︂

f∈Faces

2k · 2k (9)

∑︂
f∈Faces

2h · (2k + 2aniso − 1) (10)

Having provided this information, it will now be easier to understand to read the
pseudocode of the dichotomous search.
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Algorithm 8 Binary search of target edge length given µ-faces target.

1: procedure binarySearchTargetEdgeLength(target, Scheme scheme, a, b)
2: aFcs← −1
3: bFcs← −2
4: patience = 10
5:

6: while true do
7: c← (a+ b)/2.0
8: cFcs← predictMicroFaces(scheme, c)
9:

10: if (cFcs == aFcs ∨ cFcs == bFcs) ∧ patience−− == 0 then
11: if |target− aFcs| < |target− bFcs| then return a
12: else return b
13: end if
14: end if
15:

16: if cFcs < target then
17: bFcs = cFcs
18: b = c
19: else
20: aFcs = cFcs
21: a = c
22: end if
23:

24: if cFcs == target then return c
25: end if
26: end while
27:

28: end procedure

The search function operates as follows: it receives three parameters, the desired
number of µ-faces, and the a and b extreme intervals (as lengths) over which the
search will be performed. The extremes are initialized by the caller to 0 and 10
times the diagonal of the base mesh bounding box (a very large number but yet
proportional).

Before the binary search cycle, the variables that will contain the number of
µ-faces for the edge length a and b are created; these are aFcs and bFcs.

Within the loop, we look for the midpoint of the currently covered interval, c,
and save in the variable cFcs the prediction of mfs in the edge length c (given
the model).
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Inside the loop, three very important checks occur in sequence:

• Check whether the number of µ-faces expected at the midpoint c is equal to
the number of µ-faces expected at either end of the current interval. If this
is true, it means that the edge length c yields the same amount of faces as a
or b. The extreme that predicts the number of µ-faces closest to the target
is returned.

• If the predicted number of µ-faces at the midpoint is less than the desired
target, which means you need to move the search to the right of the midpoint;
otherwise you need to move the search to the left.

• If the number of µ-facespredicted at the midpoint exactly matches the desired
target, then c is the desired edge length (very rare case).

The variable patience is used to make sure that the condition is actually verified
(testing it 10 times); since we are dealing with decimal numbers and step functions,
it is best to be cautious.
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Chapter 6

Empirical analysis

The objective of this thesis is to assess the validity of the anisotropic scheme
with respect to the isotropic one. To accomplish this, three different comparison
approaches have been considered for the samples.

• Average of per-face inradius/circumradius aspect ratio (with visual compar-
ison).

• Comparison of the coefficients of variation inherent to the areas of the faces
(expressed as a percentage).

CV =
σ

|µ|
· 100% (11)

Where µ is the arithmetic mean, σ is standard deviation, N is the size of the
samples, and xi states the individual element of the sample.

σ =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(xi − µ)2 (12)

µ =
1

N

N∑︂
i=1

xi (13)

• Visual comparison of the two displaced subdivision schemes.

Examining error behavior between the two subdivision schemes involves two sam-
ple sets (subdivided meshes) with the same number of elements, which is 30. The
first set comprises models subdivided using the µ-mesh scheme, and the second
set adopts the anisotropic µ-mesh scheme. Each mesh element in both groups
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represents the same model, but the way they are subdivided is different for all of
them (i.e., they will have the same number of faces and vertices, but a different
number of µ-faces and µ-vertices). As a result, each element within one group
possesses a counterpart in the other, sharing an almost equal number of µ-faces,
diverging slightly in arrangement due to different partitioning strategies.

To ascertain an equivalent count of µ-faces, the process involves determining
a target edge length (Sec. 3.2) that equalizes the input amount of µ-faces. This
is obtained by performing a special binary search discussed in Section 8. The
sample generation process is done with an evaluation script (Sec. 5.2.6) which
calls multiple times a command exposed by the application when is run in the
terminal.

6.1 Target and base meshes

Several models were chosen to conduct this experiment, most of which have in
common that they consist of triangular meshes and are dense with faces. However,
another feature of these models is that they are 3D scans of significant cultural
objects. I used two open-source distribution sources for these, the project ”Three
D Scans” [Oliver Laric, 2012], only for the ”Homo Heidelbergensis” model (Sec.
6.2.5), and ”Scan TheWorld” [Beck and d’Antona, 2014] for the rest of the models.

The line-casting algorithm was optimized (Sec. 5.3.1) by taking it from time
complexity O(n2) to O(n · log n), using a particular R-factor that consists of the
maximum deviation (divided by 2) between the x-components of each triangle
in the mesh. This R-factor is used to exclude all those triangles that it does not
make sense to consider in line-casting; the problem is that if a highly heterogeneous
mesh has very large triangles, these will cancel out the R-factor and slow down
the casting execution (too far triangles are tested).

For this reason, the mesh was cleaned up, in particular, the pedestals of some
of the models considered were removed, as they had very large triangles. In ad-
dition to these procedures, all the original formats were unified with the OBJ for-
mat [Wavefront Technologies, 1990], both of which were made with MeshLab. It’s
noteworthy that the application is capable of effectively managing both the OBJ
format and OFF [Geometry Center, 1998].

The target mesh models have been subjected to a decimation process of
the original faces. This reduction was carried out by employing the Quadric
Edge Collapse Decimation [Garland and Heckbert, 1997] technique within Mesh-
Lab [Cignoni et al., 2008]. A practical example of a mesh base generated by target
decimation can be seen in Figure 31a. For a complete overview of all these models
and their data, see Table 1.
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(a) Base mesh — 9,847 faces (b) Target mesh — 984,888 faces

Figure 31: Michelangelo’s David input meshes.
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Base Target
Model Faces Vertices Faces Vertices

Dragon 23,488 11,744 2,349,078 1,174,539
Borghese Ares 17,366 8,743 1,736,666 869,124
Dancing Faun 15,110 7,577 1,511,081 755,811
Michelangelo’s David 9,847 4,962 984,888 493,189
Homo Heidelbergensis 4,156 2,078 413,258 206,690
Koma Inu 850 427 85,000 45,502

Table 1: Comparison table of target and base meshes.

6.2 Scheme comparison

For the purpose of sample comparison, a dedicated evaluation script was employed.
This script invokes the command-line application iteratively, supplying it with the
necessary arguments (further elaborated in Section 5.2.6).

python ./face -stats.py --base -mesh=decimated_model.obj

--target -mesh=original_model.obj

The script is responsible for generating 30 samples per scheme, which consist of
subdivided base meshes shifted to the target mesh (displaced mesh). The subdi-
vision level increases as samples are generated, and consequently the number of
µ-faces. The criterion for determining the number of subdivisions is based on a
multiplicative factor F multiplied by the number of µ-faces in the target mesh.

This factor ranges from 1.0 to 4.0, with an incremental step of 0.1. In total
you will have 60 samples, the script will output in a text file the statistics per-face
quality based on the inradius/circumradius aspect ratio of the circles inscribed
and circumscribed to the triangle.

The average of the mean values of these statistics is used for the final compar-
ison (Sec. 6.3), ultimately showing the percentage of improvement/worsening of
the anisotropic pattern compared to the isotropic pattern.

The scheme comparison tables are organized so that the face quality statistics
are visible under the ”Face quality” column (mean, standard deviation, and vari-
ance), while a separate column shows the second metric, the coefficient of variation.
Following the table are two face-quality comparison images
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6.2.1 Dragon

Isotropic Anisotropic
Face quality CV (%) Face quality CV (%)

F Mean σ σ2 Mean σ σ2

1.0 0.40 0.17 0.03 62.07 0.51 0.16 0.03 36.82
1.1 0.40 0.17 0.03 62.76 0.51 0.16 0.03 36.28
1.2 0.40 0.17 0.03 63.29 0.51 0.16 0.03 35.58
1.3 0.40 0.17 0.03 63.27 0.51 0.16 0.03 35.36
1.4 0.40 0.17 0.03 63.14 0.51 0.16 0.03 35.15
1.5 0.40 0.17 0.03 62.52 0.51 0.16 0.03 35.35
1.6 0.40 0.17 0.03 62.09 0.51 0.16 0.03 35.49
1.7 0.40 0.17 0.03 61.19 0.51 0.16 0.03 36.03
1.8 0.41 0.17 0.03 59.88 0.51 0.16 0.03 35.95
1.9 0.41 0.17 0.03 59.47 0.51 0.16 0.03 36.16
2.0 0.41 0.17 0.03 58.63 0.51 0.16 0.03 36.33
2.1 0.41 0.17 0.03 58.08 0.51 0.16 0.03 36.42
2.2 0.41 0.17 0.03 57.28 0.51 0.16 0.03 36.31
2.3 0.41 0.17 0.03 56.80 0.51 0.16 0.03 36.47
2.4 0.41 0.17 0.03 56.74 0.51 0.16 0.03 36.48
2.5 0.41 0.17 0.03 56.64 0.50 0.16 0.03 36.69
2.6 0.41 0.17 0.03 56.79 0.50 0.16 0.03 36.73
2.7 0.41 0.17 0.03 57.07 0.50 0.16 0.03 36.91
2.8 0.41 0.16 0.03 57.26 0.50 0.16 0.03 36.92
2.9 0.41 0.16 0.03 57.44 0.50 0.16 0.03 36.97
3.0 0.41 0.16 0.03 57.56 0.50 0.16 0.03 36.98
3.1 0.41 0.17 0.03 58.17 0.50 0.16 0.03 36.95
3.2 0.41 0.17 0.03 58.50 0.50 0.16 0.03 36.78
3.3 0.41 0.16 0.03 58.69 0.50 0.16 0.03 36.68
3.4 0.41 0.16 0.03 59.07 0.50 0.16 0.03 36.65
3.5 0.41 0.16 0.03 59.35 0.50 0.16 0.03 36.22
3.6 0.41 0.16 0.03 59.68 0.50 0.16 0.03 36.08
3.7 0.41 0.16 0.03 59.89 0.51 0.16 0.03 35.99
3.8 0.41 0.16 0.03 60.07 0.51 0.16 0.03 35.72
3.9 0.41 0.16 0.03 60.26 0.51 0.16 0.03 35.71
4.0 0.41 0.16 0.03 60.48 0.51 0.16 0.03 35.57

Table 2: Dragon — Statistical comparison of subdivision patterns.
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(a) Isotropic

(b) Anisotropic

Figure 32: Dragon — Graphical comparison of face quality.
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(a) Micro-Mesh

(b) Anisotropic Micro-Mesh

Figure 33: Dragon — Graphical comparison of displaced subdivision schemes.
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6.2.2 Borghese Ares

Isotropic Anisotropic
Face quality CV (%) Face quality CV (%)

F Mean σ σ2 Mean σ σ2

1.0 0.43 0.17 0.03 61.55 0.53 0.16 0.02 34.52
1.1 0.43 0.17 0.03 62.55 0.53 0.16 0.02 33.83
1.2 0.43 0.17 0.03 62.13 0.53 0.16 0.02 33.61
1.3 0.44 0.17 0.03 61.50 0.53 0.16 0.02 33.31
1.4 0.44 0.17 0.03 60.68 0.53 0.16 0.02 33.53
1.5 0.44 0.17 0.03 59.29 0.53 0.16 0.02 33.46
1.6 0.44 0.17 0.03 57.70 0.53 0.16 0.02 33.63
1.7 0.45 0.17 0.03 55.78 0.53 0.16 0.02 33.78
1.8 0.45 0.17 0.03 54.37 0.53 0.16 0.02 34.07
1.9 0.45 0.16 0.03 53.24 0.53 0.16 0.02 34.07
2.0 0.45 0.16 0.03 52.18 0.53 0.16 0.02 34.26
2.1 0.45 0.17 0.03 51.48 0.53 0.16 0.02 34.43
2.2 0.45 0.17 0.03 51.21 0.53 0.15 0.02 34.39
2.3 0.45 0.17 0.03 50.86 0.53 0.15 0.02 34.53
2.4 0.45 0.16 0.03 51.48 0.53 0.15 0.02 34.78
2.5 0.45 0.16 0.03 51.96 0.53 0.15 0.02 34.71
2.6 0.45 0.16 0.03 52.70 0.53 0.16 0.02 34.91
2.7 0.44 0.16 0.03 53.43 0.53 0.15 0.02 34.71
2.8 0.44 0.16 0.03 54.19 0.53 0.15 0.02 34.66
2.9 0.44 0.16 0.03 54.93 0.53 0.15 0.02 34.59
3.0 0.44 0.16 0.03 55.38 0.53 0.15 0.02 34.67
3.1 0.44 0.16 0.03 56.12 0.53 0.15 0.02 34.54
3.2 0.44 0.16 0.03 56.64 0.53 0.15 0.02 34.47
3.3 0.44 0.16 0.03 57.16 0.53 0.16 0.02 34.35
3.4 0.44 0.16 0.03 57.88 0.53 0.16 0.02 34.32
3.5 0.44 0.16 0.03 58.39 0.53 0.16 0.02 34.07
3.6 0.44 0.16 0.03 58.95 0.53 0.16 0.02 33.84
3.7 0.44 0.16 0.03 59.39 0.53 0.16 0.02 33.60
3.8 0.44 0.16 0.03 59.65 0.53 0.16 0.02 33.45
3.9 0.44 0.16 0.03 60.06 0.53 0.16 0.02 33.37
4.0 0.44 0.16 0.03 60.47 0.53 0.16 0.02 33.26

Table 3: Borghese Ares — Statistical comparison of subdivision patterns.
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(a) Isotropic (b) Anisotropic

Figure 34: Borghese Ares — Graphical comparison of face quality.
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(a) Micro-Mesh

(b) Anisotropic Micro-Mesh

Figure 35: Ares Borghese — Graphical comparison of displaced subdivision
schemes.
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6.2.3 Dancing Faun

Isotropic Anisotropic
Face quality CV (%) Face quality CV (%)

F Mean σ σ2 Mean σ σ2

1.0 0.46 0.17 0.03 60.02 0.54 0.15 0.02 33.55
1.1 0.46 0.17 0.03 60.52 0.46 0.16 0.03 32.93
1.2 0.46 0.16 0.03 60.60 0.54 0.15 0.02 32.47
1.3 0.46 0.16 0.03 59.97 0.46 0.16 0.03 32.22
1.4 0.46 0.16 0.03 58.92 0.54 0.15 0.02 32.09
1.5 0.47 0.16 0.03 57.65 0.47 0.16 0.03 31.94
1.6 0.47 0.16 0.03 56.14 0.55 0.15 0.02 32.20
1.7 0.47 0.16 0.03 54.39 0.48 0.16 0.03 32.33
1.8 0.47 0.16 0.03 52.76 0.55 0.15 0.02 32.43
1.9 0.47 0.16 0.03 50.82 0.48 0.16 0.03 32.60
2.0 0.48 0.16 0.03 49.54 0.55 0.15 0.02 32.75
2.1 0.48 0.16 0.03 48.95 0.48 0.16 0.03 33.00
2.2 0.48 0.16 0.03 48.64 0.55 0.15 0.02 33.15
2.3 0.48 0.16 0.03 48.53 0.47 0.17 0.03 33.47
2.4 0.48 0.16 0.03 49.04 0.54 0.15 0.02 33.76
2.5 0.47 0.16 0.03 49.78 0.47 0.17 0.03 33.77
2.6 0.47 0.16 0.03 50.85 0.54 0.15 0.02 33.88
2.7 0.47 0.16 0.03 51.68 0.47 0.17 0.03 33.95
2.8 0.47 0.16 0.03 52.35 0.54 0.15 0.02 33.87
2.9 0.47 0.16 0.03 53.16 0.54 0.15 0.02 33.86
3.0 0.47 0.16 0.03 54.06 0.47 0.17 0.03 33.80
3.1 0.47 0.16 0.03 54.61 0.54 0.15 0.02 33.73
3.2 0.47 0.16 0.02 55.61 0.46 0.17 0.03 33.57
3.3 0.47 0.16 0.02 56.35 0.54 0.15 0.02 33.37
3.4 0.47 0.16 0.02 56.85 0.46 0.17 0.03 33.25
3.5 0.47 0.16 0.02 57.16 0.54 0.15 0.02 33.00
3.6 0.47 0.16 0.02 57.67 0.46 0.17 0.03 32.94
3.7 0.46 0.16 0.02 58.22 0.54 0.15 0.02 32.96
3.8 0.46 0.16 0.02 58.54 0.46 0.17 0.03 32.71
3.9 0.46 0.16 0.02 58.90 0.54 0.15 0.02 32.45
4.0 0.46 0.16 0.02 59.08 0.45 0.17 0.03 32.18

Table 4: Dancing Faun — Statistical comparison of subdivision patterns.

69



(a) Isotropic (b) Anisotropic

Figure 36: Dancing Faun — Graphical comparison of face quality.
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(a) Micro-Mesh

(b) Anisotropic Micro-Mesh

Figure 37: Dancing Faun — Graphical comparison of displaced subdivision
schemes.
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6.2.4 Michelangelo’s David

Isotropic Anisotropic
Face quality CV (%) Face quality CV (%)

F Mean σ σ2 Mean σ σ2

1.0 0.38 0.17 0.03 66.66 0.5 0.17 0.03 37.11
1.1 0.38 0.17 0.03 67.13 0.5 0.17 0.03 36.74
1.2 0.38 0.17 0.03 66.94 0.5 0.17 0.03 36.82
1.3 0.38 0.17 0.03 66.65 0.5 0.17 0.03 37.53
1.4 0.38 0.17 0.03 65.67 0.5 0.17 0.03 37.85
1.5 0.38 0.17 0.03 64.76 0.5 0.17 0.03 37.74
1.6 0.38 0.17 0.03 63.33 0.5 0.17 0.03 37.80
1.7 0.39 0.17 0.03 62.76 0.5 0.17 0.03 37.62
1.8 0.39 0.17 0.03 62.57 0.5 0.17 0.03 37.41
1.9 0.39 0.17 0.03 62.62 0.5 0.17 0.03 37.43
2.0 0.39 0.17 0.03 62.63 0.5 0.17 0.03 37.53
2.1 0.39 0.17 0.03 62.38 0.5 0.17 0.03 37.15
2.2 0.39 0.17 0.03 62.36 0.5 0.17 0.03 37.13
2.3 0.39 0.17 0.03 62.54 0.5 0.17 0.03 36.72
2.4 0.39 0.17 0.03 62.38 0.5 0.17 0.03 36.63
2.5 0.38 0.17 0.03 63.28 0.5 0.17 0.03 36.45
2.6 0.38 0.17 0.03 64.14 0.5 0.17 0.03 36.33
2.7 0.38 0.17 0.03 64.42 0.5 0.17 0.03 36.20
2.8 0.38 0.17 0.03 65.00 0.5 0.17 0.03 36.19
2.9 0.38 0.17 0.03 65.41 0.5 0.17 0.03 36.29
3.0 0.38 0.17 0.03 66.11 0.5 0.17 0.03 36.43
3.1 0.38 0.17 0.03 66.25 0.5 0.17 0.03 36.51
3.2 0.38 0.17 0.03 66.60 0.5 0.17 0.03 36.19
3.3 0.38 0.17 0.03 66.80 0.5 0.17 0.03 35.83
3.4 0.38 0.17 0.03 66.70 0.5 0.17 0.03 35.70
3.5 0.38 0.17 0.03 67.03 0.5 0.17 0.03 35.46
3.6 0.38 0.17 0.03 67.25 0.5 0.17 0.03 35.53
3.7 0.38 0.17 0.03 67.64 0.5 0.17 0.03 35.70
3.8 0.38 0.17 0.03 67.81 0.5 0.17 0.03 35.88
3.9 0.38 0.17 0.03 67.71 0.5 0.17 0.03 36.15
4.0 0.38 0.17 0.03 67.35 0.5 0.17 0.03 35.92

Table 5: Michelangelo’s David — Statistical comparison of subdivision patterns.
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(a) Isotropic (b) Anisotropic

Figure 38: Michelangelo’s David — Graphical comparison of face quality.
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(a) Micro-Mesh

(b) Anisotropic Micro-Mesh

Figure 39: Michelangelo’s David — Graphical comparison of displaced subdivision
schemes.

74



6.2.5 Homo Heidelbergensis

Isotropic Anisotropic
Face quality CV (%) Face quality CV (%)

F Mean σ σ2 Mean σ σ2

1.0 0.39 0.17 0.03 62.97 0.49 0.17 0.03 38.03
1.1 0.39 0.17 0.03 64.30 0.42 0.17 0.03 38.36
1.2 0.39 0.17 0.03 65.13 0.49 0.17 0.03 38.15
1.3 0.39 0.17 0.03 65.14 0.43 0.17 0.03 37.82
1.4 0.39 0.17 0.03 65.30 0.49 0.17 0.03 37.91
1.5 0.39 0.17 0.03 65.69 0.41 0.17 0.03 37.59
1.6 0.39 0.17 0.03 65.60 0.49 0.17 0.03 37.18
1.7 0.39 0.17 0.03 66.18 0.40 0.17 0.03 37.79
1.8 0.39 0.17 0.03 65.38 0.49 0.17 0.03 37.86
1.9 0.39 0.17 0.03 65.28 0.40 0.17 0.03 37.65
2.0 0.39 0.17 0.03 65.36 0.49 0.17 0.03 37.39
2.1 0.39 0.17 0.03 64.72 0.39 0.17 0.03 36.87
2.2 0.39 0.17 0.03 64.00 0.49 0.17 0.03 37.10
2.3 0.39 0.17 0.03 63.28 0.40 0.17 0.03 36.69
2.4 0.39 0.17 0.03 63.38 0.49 0.17 0.03 36.57
2.5 0.39 0.17 0.03 62.72 0.49 0.17 0.03 36.72
2.6 0.39 0.17 0.03 62.74 0.39 0.17 0.03 36.52
2.7 0.40 0.17 0.03 62.24 0.49 0.17 0.03 35.95
2.8 0.40 0.17 0.03 62.19 0.39 0.18 0.03 36.11
2.9 0.39 0.17 0.03 62.31 0.49 0.17 0.03 36.03
3.0 0.40 0.17 0.03 62.11 0.39 0.18 0.03 35.92
3.1 0.39 0.17 0.03 62.60 0.49 0.17 0.03 36.08
3.2 0.39 0.17 0.03 62.56 0.39 0.17 0.03 35.68
3.3 0.39 0.17 0.03 63.22 0.49 0.17 0.03 36.19
3.4 0.39 0.17 0.03 63.21 0.39 0.18 0.03 36.23
3.5 0.39 0.17 0.03 63.30 0.49 0.17 0.03 36.40
3.6 0.39 0.17 0.03 63.46 0.39 0.17 0.03 36.84
3.7 0.39 0.17 0.03 63.64 0.49 0.17 0.03 36.49
3.8 0.39 0.17 0.03 63.92 0.39 0.17 0.03 36.90
3.9 0.39 0.17 0.03 63.71 0.49 0.17 0.03 36.97
4.0 0.39 0.17 0.03 63.75 0.40 0.17 0.03 37.26

Table 6: Homo Heidelbergensis — Statistical comparison of subdivision patterns.
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(a) Isotropic (b) Anisotropic

Figure 40: Homo Heidelbergensis — Graphical comparison of face quality.
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(a) Micro-Mesh

(b) Anisotropic Micro-Mesh

Figure 41: Homo Heidelbergensis — Graphical comparison of displaced subdivision
schemes.
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6.2.6 Koma Inu

Isotropic Anisotropic
Face quality CV (%) Face quality CV (%)

F Mean σ σ2 Mean σ σ2

1.0 0.42 0.17 0.03 61.57 0.51 0.16 0.03 36.51
1.1 0.42 0.17 0.03 61.84 0.51 0.16 0.03 36.62
1.2 0.43 0.17 0.03 61.20 0.51 0.17 0.03 37.06
1.3 0.43 0.17 0.03 61.96 0.51 0.17 0.03 35.92
1.4 0.43 0.17 0.03 60.98 0.51 0.16 0.03 36.58
1.5 0.43 0.17 0.03 59.79 0.52 0.16 0.03 35.44
1.6 0.44 0.17 0.03 57.49 0.52 0.16 0.03 35.78
1.7 0.43 0.17 0.03 58.41 0.52 0.16 0.03 35.92
1.8 0.43 0.17 0.03 57.57 0.52 0.16 0.03 34.66
1.9 0.43 0.17 0.03 58.14 0.52 0.16 0.03 34.53
2.0 0.43 0.17 0.03 57.24 0.52 0.16 0.03 34.36
2.1 0.43 0.17 0.03 57.37 0.52 0.16 0.03 33.03
2.2 0.43 0.17 0.03 55.68 0.52 0.16 0.03 33.42
2.3 0.43 0.17 0.03 55.34 0.52 0.16 0.03 33.26
2.4 0.44 0.17 0.03 53.99 0.52 0.16 0.03 33.49
2.5 0.43 0.17 0.03 54.73 0.51 0.16 0.03 33.68
2.6 0.43 0.17 0.03 54.11 0.51 0.16 0.03 34.25
2.7 0.43 0.17 0.03 54.55 0.51 0.16 0.03 33.47
2.8 0.43 0.17 0.03 54.22 0.52 0.16 0.03 34.10
2.9 0.43 0.17 0.03 53.87 0.52 0.16 0.03 34.11
3.0 0.43 0.17 0.03 54.61 0.52 0.16 0.03 34.58
3.1 0.43 0.17 0.03 55.08 0.52 0.16 0.03 33.95
3.2 0.43 0.17 0.03 56.32 0.51 0.16 0.03 33.83
3.3 0.43 0.17 0.03 57.26 0.51 0.16 0.03 33.64
3.4 0.43 0.17 0.03 57.55 0.51 0.16 0.03 34.18
3.5 0.43 0.17 0.03 58.18 0.51 0.16 0.03 34.46
3.6 0.43 0.17 0.03 58.54 0.51 0.16 0.03 34.42
3.7 0.43 0.17 0.03 59.02 0.51 0.16 0.03 36.29
3.8 0.43 0.16 0.03 59.35 0.51 0.17 0.03 36.28
3.9 0.43 0.16 0.03 59.90 0.51 0.16 0.03 35.70
4.0 0.42 0.16 0.03 60.53 0.51 0.16 0.03 35.41

Table 7: Koma Inu — Statistical comparison of subdivision patterns.
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(a) Isotropic

(b) Anisotropic

Figure 42: Koma Inu — Graphical comparison of face quality.
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(a) Micro-Mesh

(b) Anisotropic Micro-Mesh

Figure 43: Koma Inu — Graphical comparison of displaced subdivision schemes.
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6.3 Final results

To check for possible improvements of the new anisotropic partitioning scheme, the
arithmetic mean value of the average face quality, and the coefficient of variation
are considered for each model. By comparing these results, we can calculate the
percentage performance of the new anisotropic scheme. It is important to note that
we can speak of improvement when we observe increases in the average values of
the quality of the faces and/or decreases in the average coefficient of variation. In
the Table 8 such increases and decreases are indicated by the symbols ”+” and
”-”.

Isotropic Anisotropic Results
Average Average Mean (%) CV (%)

Model Mean CV (%) Mean CV (%)

Dragon 0.41 59.49 0.51 36.25 +24.39 -39.06
Borghese Ares 0.44 56.56 0.53 34.12 +20.45 -39.67
Dancing Faun 0.47 54.88 0.51 33.04 +8.51 -39.79
Michelangelo’s David 0.38 65.19 0.50 36.64 +31.57 -43.79
Homo Heidelbergensis 0.39 63.85 0.45 36.94 +25.64 -42.14
Koma Inu 0.43 57.63 0.51 34.80 +18.60 -39.61

Table 8: Table of obtained improvements over average face quality and average
coefficients of variation.

Analyzing the table, we can assert that all models had an increase in the aver-
age quality of faces between 8.51% and 31.57%, while the average coefficient of
variation decreased by a value between 39.06% and 43.79%.

The results obtained can be considered satisfactory for the dataset under con-
sideration. On average, utilizing the anisotropic scheme led to an average im-
provement in face quality of 21.53% and an average reduction in the coefficient of
variation of 40.68%. The anisotropic scheme demonstrates positive performance
across all models in the dataset and in both numerical statistics considered. It
even surpasses the visual comparison of schemes, resulting in a more homogeneous
subdivision with the anisotropic scheme.
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Chapter 7

Conclusions

7.1 Conclusions

In conclusion, the study conducted has affirmed that the anisotropic schema repre-
sents a viable and promising alternative to the conventional µ-mesh schema. These
affirmations are grounded in a comprehensive empirical analysis, as expounded in
Chapter 6. The analysis has showcased not only the encouraging numerical results
(Sec. 6.3) in comparisons but also visually satisfying improvements with respect to
the µ-mesh subdivision scheme. In a retrospective evaluation, it is evident that the
incorporation of anisotropy control is a favorable attribute within the µ-mesh
schema.

It not only enhances the generation of more isotropic µ-faces, which are gener-
ally considered more aesthetically pleasing (symmetrical) but also plays a pivotal
role in effectively mitigating the coefficient of variation when contrasted with the
classical approach.

These achievements deserve commendation, which constituted a primary re-
search constraint. It is essential to underscore that the current findings provide
substantial evidence that the anisotropic schema holds considerable promise not
only within graphics applications but also as a catalyst for pioneering new devel-
opments in alternative subdivision schemes.

As a result, this research not only reinforces the feasibility of anisotropic control
within the context of µ-mesh subdivision but also underscores its potential to
extend into a broader spectrum of applications, presenting an exciting avenue for
further exploration and innovation within the field of geometry processing and
computer graphics.
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7.2 Future developments

As mentioned in the conclusions, this research on anisotropic µ-mesh schemes
paves the way for new implementation schemes. The scheme can still be refined;
a first optimization that could be done to increase the quality of the faces is to
subdivide highly obtuse isosceles triangles (Sec. 4.4) in rectangular triangles.

As for the actual research, the development of a hybrid subdivision scheme
can be considered. A scheme where it is possible to tailor the control of triangle
anisotropy in areas where the triangles are thin and elongated (e.g., arms, legs,
...) and utilize the µ-mesh scheme on more isotropic macro-faces (e.g., face).
Alternatively, further exploration could involve parallel implementation with a
comprehensive analysis of subdivision scheme efficiency.
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